Cho tam giác ABC có AB = 2 BC=4 CA=3

Cho tam giác $ABC$ có $AB = 2,BC = 4,CA = 3.$ Tính độ dài phân giác $AD$ của góc $A$.

A.

B.

C.

D.

Cho tam giác ABC có : AB = 2

BC=4

CA=3

Gọi G là trọng tâm của tam giác . Tình \(\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}\)

  • lý thuyết
  • trắc nghiệm
  • hỏi đáp
  • bài tập sgk

Cho tam giác ABC có : AB = 2

BC=4

CA=3

Gọi G là trọng tâm của tam giác . Tình \(\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}\)

Các câu hỏi tương tự

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng.

Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0).

a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\)

b) Tìm điểm D đối xứng của A qua C

Bài 4: Trong mặt phẳng Oxy, cho ba điểm A(1;-2), B(0;4), C(3;2)

a) Tìm tọa độ các vector \(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BC}\)

b) Tìm tọa độ trung điểm I của đoạn AB

c) Tìm tọa độ điểm M sao cho: \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)

d) Tìm tọa độ điểm N sao cho: \(\overrightarrow{AN}+2\overrightarrow{BN}-4\overrightarrow{CN}=\overrightarrow{0}\)

CHUYÊN MỤC VUI CHƠI - GIẢI TRÍ MÙA "CORONA

Với mỗi bài giải đúng thuộc mức 1, mức 2 sẽ được 1GP và mức 3, mức 4 sẽ được 2GP. Mong các CTV hỗ trợ mình nhé!

Bài 1. (Mức 1)

a) Giải hệ phương trình: \(\left\{{}\begin{matrix}x+y+z=3\\x-z=0\\z=2\end{matrix}\right.\)

b) Cho tam giác \(ABC\) có trọng tâm \(G\)\(M\) là trung điểm cạnh \(BC.\) Biểu diễn \(\overrightarrow{AG}\) theo \(\overrightarrow{AM}\)

Bài 2. (Mức 2)

a) Trong mặt phẳng \(Oxy\), cho hình chữ nhật có tọa độ các đỉnh \(A(2;-1),B(-1;2)\)\(C(-2;1).\)Tìm tọa độ điểm \(D.\)

b) Giải phương trình: \(\sqrt{8-x^2}=x^2\)

Bài 3. (Mức 3) Cho hàm số \(y=f(x)\) xác định và nhận giá trị trên tập số nguyên; đồng thời thỏa mãn \(f(1)=0\)\(f(m+n)=f(m)+f(n)+3(4mn-3)\)với mọi số nguyên \(m,n\). Xác định \(f(9).\) (Bài tập này học sinh lớp 4 có thể làm được.)

Bài 4. (Mức 4) Trên trục \(Ox\) cho bốn điểm \(A,B,C,D\) lần lượt có tọa độ là \(a,b,c,d\) và thỏa mãn \(\overline{AB}.\overline{BD}+\overline{AD}.\overline{BC}=0.\) Tìm hệ thức liên hệ giữa \(a,b,c,d\).

Đáp án sẽ được công bố dưới phần trả lời vào lúc 21:00 ngày hôm nay. Mời tất cả tham gia.

Lưu ý: Tất cả các bạn chúng ta cố gắng vệ sinh cá nhân, giữ gìn sức khỏe thật tốt, tránh tập trung nơi đông người và tuân thủ các quy tắc phòng chống dịch bệnh nCoV nhé!

Tải thêm tài liệu liên quan đến bài viết Cho tam giác ABC có AB = 2 BC=4 CA=3