Topological 2D materials

  • Review Article
  • Published: 09 November 2021

Light-induced emergent phenomena in 2D materials and topological materials

  • Changhua Bao ORCID: orcid.org/0000-0002-8706-65411,
  • Peizhe Tang ORCID: orcid.org/0000-0002-6345-58092,3,
  • Dong Sun4 &
  • Shuyun Zhou ORCID: orcid.org/0000-0002-9841-86101,5

Nature Reviews Physics volume4,pages 3348 [2022]Cite this article

  • 2502 Accesses

  • 16 Altmetric

  • Metrics details

Subjects

  • Condensed-matter physics
  • Electronic properties and devices
  • Electronic properties and materials
  • Topological matter
  • Two-dimensional materials

Abstract

Lightmatter interaction in 2D and topological materials provides a fascinating control knob for inducing emergent, non-equilibrium properties and achieving new functionalities in the ultrafast timescale [from femtosecond to picosecond]. Over the past decade, intriguing light-induced phenomena, such as BlochFloquet states and photo-induced phase transitions, have been reported experimentally, but many still await experimental realization. In this Review, we discuss recent progress on the light-induced phenomena, in which the light field could act as a time-periodic field to drive Floquet states, induce structural and topological phase transitions in quantum materials, couple with spin and various pseudospins, and induce nonlinear optical responses that are affected by the geometric phase. Perspectives on the opportunities of proposed light-induced phenomena, as well as open experimental challenges, are also discussed.

Key points

  • Lightmatter interaction plays critical roles in emerging exotic phenomena in 2D materials and topological materials not only as an experimental probe but also as a control knob for inducing emergent non-equilibrium properties that are otherwise not possible to be achieved in the equilibrium state.

  • Light, regarded as a time-periodic electric field, can induce the photo-dressing Floquet states, which can be further utilized to dynamically engineer the electronic properties of quantum materials, especially topological properties, dubbed Floquet engineering.

  • By resonantly exciting electrons or lattices, lightmatter interaction can dynamically change the energy landscape of 2D and topological materials, leading to the light-induced phase transitions, such as the emergence of light-induced superconductivity or hidden states.

  • By coupling the angular momentum of light with spins and pseudospins, lightmatter interaction can be used to detect and manipulate various quantum degrees of freedom for new concepts of device applications.

  • By coupling to geometric phase of the Bloch wavefunctions, lightmatter interaction can be used as a powerful probe of geometric-phase-related properties and to manipulate the materials response, leading to rich, nonlinear optical responses.

Access through your institution
Buy or subscribe

This is a preview of subscription content

Access options

Access through your institution
Access through your institution
Change institution
Buy or subscribe

Subscribe to Journal

Get full journal access for 1 year

92,52

only 7,71 per issue

Subscribe

All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.

Buy article

Get time limited or full article access on ReadCube.

$32.00

Buy

All prices are NET prices.

Additional access options:

  • Log in
  • Learn about institutional subscriptions
Fig. 1: Coupling of light with 2D and/or topological materials and light-induced emerging phenomena.
Fig. 2: Floquet engineering and experimental evidence of Floquet states.
Fig. 3: Predicted light-induced topological phase transitions by Floquet engineering.
Fig. 4: Light-induced phase transitions.
Fig. 5: Emerging properties due to coupling to spin, sublattice pseudospin, valley and chirality.
Fig. 6: Geometric phase effect on nonlinear optical response.

References

  1. 1.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666669 [2004].

    ADS Article Google Scholar

  2. 2.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419425 [2013].

    Google Scholar

  3. 3.

    Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 12651275 [2020].

    ADS Google Scholar

  4. 4.

    Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155163 [2021].

    Google Scholar

  5. 5.

    Yao, W., Aeschlimann, M. & Zhou, S. Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures. Chin. Phys. B 29, 127304 [2020].

    ADS Google Scholar

  6. 6.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 [2018].

    ADS MathSciNet Google Scholar

  7. 7.

    Lv, B. Q., Qian, T. & Ding, H. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 93, 025002 [2021].

    ADS Google Scholar

  8. 8.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 [2016].

    MathSciNet MATH Google Scholar

  9. 9.

    Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 [2017].

    ADS Google Scholar

  10. 10.

    Tang, P., Zhou, Q. & Zhang, S. C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 [2017].

    ADS Google Scholar

  11. 11.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 20152018 [1988].

    ADS Google Scholar

  12. 12.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 [2005].

    ADS Google Scholar

  13. 13.

    Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 11051110 [2016].

    Google Scholar

  14. 14.

    Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 11551160 [2016].

    ADS Google Scholar

  15. 15.

    Wang, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 241119[R] [2016].

    ADS Google Scholar

  16. 16.

    Yan, M. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 [2017].

    ADS Google Scholar

  17. 17.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 7679 [2018].

    ADS MathSciNet MATH Google Scholar

  18. 18.

    Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229244 [2020].

    Google Scholar

  19. 19.

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406[R] [2009].

    ADS Google Scholar

  20. 20.

    Perfetti, L. et al. Time evolution of the electronic structure of 1TTaS2 through the insulatormetal transition. Phys. Rev. Lett. 97, 067402 [2006].

    ADS Google Scholar

  21. 21.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189191 [2011].

    ADS Google Scholar

  22. 22.

    Cavalleri, A. Photo-induced superconductivity. Contemp. Phys. 59, 3146 [2017].

    ADS Google Scholar

  23. 23.

    Zhang, M. Y. et al. Light-induced subpicosecond lattice symmetry switch in MoTe2. Phys. Rev. X 9, 021036 [2019].

    Google Scholar

  24. 24.

    Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 6166 [2019].

    ADS Google Scholar

  25. 25.

    Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X 10, 021013 [2020].

    Google Scholar

  26. 26.

    McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96100 [2011].

    ADS Google Scholar

  27. 27.

    Jozwiak, C. et al. Photoelectron spin-flipping and texture manipulation in a topological insulator. Nat. Phys. 9, 293298 [2013].

    Google Scholar

  28. 28.

    Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277281 [2020].

    ADS Google Scholar

  29. 29.

    Sie, E. J. et al. Large, valley-exclusive BlochSiegert shift in monolayer WS2. Science 355, 10661069 [2017].

    ADS Google Scholar

  30. 30.

    Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545549 [2020].

    ADS Google Scholar

  31. 31.

    Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 [2016].

    ADS Google Scholar

  32. 32.

    Patankar, S. et al. Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98, 165113 [2018].

    ADS Google Scholar

  33. 33.

    Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471475 [2019].

    ADS Google Scholar

  34. 34.

    Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476481 [2019].

    ADS Google Scholar

  35. 35.

    Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329334 [2021].

    ADS Google Scholar

  36. 36.

    Qi, Y. et al. Photoinduced concurrent intralayer and interlayer structural transitions and associated topological transitions in MTe2 [M=Mo, W]. Preprint at arXiv //arxiv.org/abs/2105.14175 [2021].

  37. 37.

    Guan, M. X., Wang, E., You, P. W., Sun, J. T. & Meng, S. Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2. Nat. Commun. 12, 1885 [2021].

    ADS Google Scholar

  38. 38.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 [2016].

    ADS Google Scholar

  39. 39.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 10561068 [2017].

    Google Scholar

  40. 40.

    Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 [2018].

    ADS Google Scholar

  41. 41.

    Liu, J., Xia, F., Xiao, D., Garcia de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830837 [2020].

    ADS Google Scholar

  42. 42.

    Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193206 [2021].

    Google Scholar

  43. 43.

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics [Saunders College Publishing, 1976].

  44. 44.

    Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 22032213 [1973].

    ADS Google Scholar

  45. 45.

    Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 [2008].

    ADS Google Scholar

  46. 46.

    López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: gap appearance and nonlinear effects. Phys. Rev. B 78, 201406[R] [2008].

    ADS Google Scholar

  47. 47.

    Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 [2010].

    ADS Google Scholar

  48. 48.

    López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: gaps and band structure. Philos. Mag. 90, 29772988 [2010].

    ADS Google Scholar

  49. 49.

    Kibis, O. V. Metal-insulator transition in graphene induced by circularly polarized photons. Phys. Rev. B 81, 165433 [2010].

    ADS Google Scholar

  50. 50.

    Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 [2011].

    ADS Google Scholar

  51. 51.

    Calvo, H. L., Pastawski, H. M., Roche, S. & Torres, L. E. F. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 [2011].

    ADS Google Scholar

  52. 52.

    Seetharam, K. I., Bardyn, C.-E., Lindner, N. H., Rudner, M. S. & Refael, G. Controlled population of FloquetBloch states via coupling to Bose and Fermi baths. Phys. Rev. X 5, 041050 [2015].

    Google Scholar

  53. 53.

    Inoue, J. & Tanaka, A. Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105, 017401 [2010].

    ADS Google Scholar

  54. 54.

    Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 [2013].

    Google Scholar

  55. 55.

    Usaj, G., Perez-Piskunow, P. M., Foa Torres, L. E. F. & Balseiro, C. A. Irradiated graphene as a tunable Floquet topological insulator. Phys. Rev. B 90, 115423 [2014].

    ADS Google Scholar

  56. 56.

    Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A. & Torres, L. E. F. F. Floquet chiral edge states in graphene. Phys. Rev. B 89, 121401[R] [2014].

    ADS Google Scholar

  57. 57.

    Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 [2015].

    ADS Google Scholar

  58. 58.

    Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490495 [2011].

    Google Scholar

  59. 59.

    Lindner, N. H., Bergman, D. L., Refael, G. & Galitski, V. Topological Floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 [2013].

    ADS Google Scholar

  60. 60.

    Cayssol, J., Dóra, B., Simon, F. & Moessner, R. Floquet topological insulators. Phys. Status Solidi RRL 7, 101108 [2013].

    Google Scholar

  61. 61.

    Bukov, M., DAlessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139226 [2015].

    ADS Google Scholar

  62. 62.

    Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387408 [2019].

    ADS Google Scholar

  63. 63.

    Giovannini, U. D. & Hübener, H. Floquet analysis of excitations in materials. J. Phys. Mater. 3, 012001 [2019].

    Google Scholar

  64. 64.

    Wang, Y. et al. Theoretical understanding of photon spectroscopies in correlated materials in and out of equilibrium. Nat. Rev. Mater. 3, 312323 [2018].

    ADS Google Scholar

  65. 65.

    Parameswaran, S. A. & Vasseur, R. Many-body localization, symmetry and topology. Rep. Prog. Phys. 81, 082501 [2018].

    ADS MathSciNet Google Scholar

  66. 66.

    de la Torre, A. et al. Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 [2021].

    ADS Google Scholar

  67. 67.

    Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 [2021].

    ADS Google Scholar

  68. 68.

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of FloquetBloch states on the surface of a topological insulator. Science 342, 453457 [2013].

    ADS Google Scholar

  69. 69.

    Mahmood, F. et al. Selective scattering between FloquetBloch and Volkov states in a topological insulator. Nat. Phys. 12, 306310 [2016].

    Google Scholar

  70. 70.

    Kundu, A., Fertig, H. A. & Seradjeh, B. Effective theory of Floquet topological transitions. Phys. Rev. Lett. 113, 236803 [2014].

    ADS Google Scholar

  71. 71.

    McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 3841 [2020].

    Google Scholar

  72. 72.

    Sato, S. A. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 [2019].

    ADS Google Scholar

  73. 73.

    Nuske, M. et al. Floquet dynamics in light-driven solids. Phys. Rev. Res. 2, 043408 [2020].

    Google Scholar

  74. 74.

    Sato, S. A. et al. Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation. New J. Phys. 21, 093005 [2019].

    ADS MathSciNet Google Scholar

  75. 75.

    Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101103 [1975].

    ADS Google Scholar

  76. 76.

    Narang, P., Garcia, C. A. C. & Felser, C. The topology of electronic band structures. Nat. Mater. 20, 293300 [2021].

    ADS Google Scholar

  77. 77.

    Weber, C. P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 129, 070901 [2021].

    ADS Google Scholar

  78. 78.

    Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet Weyl semimetal induced by off-resonant light. EPL 105, 17004 [2014].

    ADS Google Scholar

  79. 79.

    Chan, C. K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 [2016].

    ADS Google Scholar

  80. 80.

    Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 [2016].

    ADS Google Scholar

  81. 81.

    Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-II Weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106[R] [2016].

    ADS Google Scholar

  82. 82.

    Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable FloquetWeyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 [2017].

    ADS Google Scholar

  83. 83.

    Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 [2011].

    ADS Google Scholar

  84. 84.

    Yan, Z. & Wang, Z. Floquet multi-Weyl points in crossing-nodal-line semimetals. Phys. Rev. B 96, 041206[R] [2017].

    ADS Google Scholar

  85. 85.

    Ezawa, M. Photoinduced topological phase transition from a crossing-line nodal semimetal to a multiple-Weyl semimetal. Phys. Rev. B 96, 041205[R] [2017].

    ADS Google Scholar

  86. 86.

    Yan, Z. & Wang, Z. Tunable Weyl points in periodically driven nodal line semimetals. Phys. Rev. Lett. 117, 087402 [2016].

    ADS Google Scholar

  87. 87.

    Taguchi, K., Xu, D.-H., Yamakage, A. & Law, K. T. Photovoltaic anomalous Hall effect in line-node semimetals. Phys. Rev. B 94, 155206 [2016].

    ADS Google Scholar

  88. 88.

    Narayan, A. Tunable point nodes from line-node semimetals via application of light. Phys. Rev. B 94, 041409[R] [2016].

    ADS Google Scholar

  89. 89.

    Wang, Z. F., Liu, Z., Yang, J. & Liu, F. Light-induced type-II band inversion and quantum anomalous Hall state in monolayer FeSe. Phys. Rev. Lett. 120, 156406 [2018].

    ADS Google Scholar

  90. 90.

    Wang, Q.-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 [2012].

    ADS Google Scholar

  91. 91.

    Zhang, R.-X., Cole, W. S., Wu, X. & Das Sarma, S. Higher-order topology and nodal topological superconductivity in Fe[Se,Te] heterostructures. Phys. Rev. Lett. 123, 167001 [2019].

    ADS Google Scholar

  92. 92.

    Gray, M. J. et al. Evidence for helical hinge zero modes in an Fe-based superconductor. Nano Lett. 19, 48904896 [2019].

    ADS Google Scholar

  93. 93.

    Wu, X., Liu, X., Thomale, R. & Liu, C.-X. High-Tc superconductor Fe[Se,Te] Monolayer: an intrinsic, scalable and electrically-tunable majorana platform. Natl Sci. Rev. //doi.org/10.1093/nsr/nwab087 [2021].

    Article Google Scholar

  94. 94.

    Wang, Z. F. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3[001] film. Nat. Mater. 15, 968973 [2016].

    ADS Google Scholar

  95. 95.

    Katan, Y. T. & Podolsky, D. Modulated Floquet topological insulators. Phys. Rev. Lett. 110, 016802 [2013].

    ADS Google Scholar

  96. 96.

    Narayan, A. Floquet dynamics in two-dimensional semi-Dirac semimetals and three-dimensional Dirac semimetals. Phys. Rev. B 91, 205445 [2015].

    ADS Google Scholar

  97. 97.

    DAlessio, L. & Rigol, M. Dynamical preparation of Floquet Chern insulators. Nat. Commun. 6, 8336 [2015].

    ADS Google Scholar

  98. 98.

    Wang, H., Zhou, L. & Chong, Y. D. Floquet Weyl phases in a three-dimensional network model. Phys. Rev. B 93, 144114 [2016].

    ADS Google Scholar

  99. 99.

    Bomantara, R. W., Raghava, G. N., Zhou, L. & Gong, J. Floquet topological semimetal phases of an extended kicked Harper model. Phys. Rev. E 93, 022209 [2016].

    ADS MathSciNet Google Scholar

  100. 100.

    Zhang, X.-X., Ong, T. T. & Nagaosa, N. Theory of photoinduced Floquet Weyl semimetal phases. Phys. Rev. B 94, 235137 [2016].

    ADS Google Scholar

  101. 101.

    Roy, R. & Harper, F. Periodic table for Floquet topological insulators. Phys. Rev. B 96, 155118 [2017].

    ADS Google Scholar

  102. 102.

    Liu, H., Sun, J. T., Cheng, C., Liu, F. & Meng, S. Photoinduced nonequilibrium topological states in strained black phosphorus. Phys. Rev. Lett. 120, 237403 [2018].

    ADS Google Scholar

  103. 103.

    Ezawa, M. Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys. Rev. Lett. 110, 026603 [2013].

    ADS Google Scholar

  104. 104.

    Nguyen, P. X. & Tse, W.-K. Photoinduced anomalous Hall effect in two-dimensional transition metal dichalcogenides. Phys. Rev. B 103, 125420 [2021].

    ADS Google Scholar

  105. 105.

    Dutreix, C., Stepanov, E. A. & Katsnelson, M. I. Laser-induced topological transitions in phosphorene with inversion symmetry. Phys. Rev. B 93, 241404[R] [2016].

    ADS Google Scholar

  106. 106.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 1223312237 [2011].

    ADS Google Scholar

  107. 107.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 4350 [2018].

    ADS Google Scholar

  108. 108.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 8084 [2018].

    ADS Google Scholar

  109. 109.

    Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5, 748763 [2020].

    ADS Google Scholar

  110. 110.

    Rodriguez-Vega, M., Vogl, M. & Fiete, G. A. Low-frequency and MoiréFloquet engineering: a review. Ann. Phys. //doi.org/10.1016/j.aop.2021.168434 [2021].

    Article Google Scholar

  111. 111.

    Li, Y., Fertig, H. A. & Seradjeh, B. Floquet-engineered topological flat bands in irradiated twisted bilayer graphene. Phys. Rev. Res. 2, 043275 [2020].

    Google Scholar

  112. 112.

    Katz, O., Refael, G. & Lindner, N. H. Optically induced flat bands in twisted bilayer graphene. Phys. Rev. B 102, 155123 [2020].

    ADS Google Scholar

  113. 113.

    Vogl, M., Rodriguez-Vega, M. & Fiete, G. A. Effective Floquet Hamiltonians for periodically driven twisted bilayer graphene. Phys. Rev. B 101, 235411 [2020].

    ADS Google Scholar

  114. 114.

    Vogl, M., Rodriguez-Vega, M. & Fiete, G. A. Floquet engineering of interlayer couplings: tuning the magic angle of twisted bilayer graphene at the exit of a waveguide. Phys. Rev. B 101, 241408[R] [2020].

    ADS Google Scholar

  115. 115.

    Kim, H., Dehghani, H., Aoki, H., Martin, I. & Hafezi, M. Optical imprinting of superlattices in two-dimensional materials. Phys. Rev. Res. 2, 043004 [2020].

    Google Scholar

  116. 116.

    Topp, G. E. et al. Topological Floquet engineering of twisted bilayer graphene. Phys. Rev. Res. 1, 023031 [2019].

    Google Scholar

  117. 117.

    Lu, M., Zeng, J., Liu, H., Gao, J.-H. & Xie, X. C. Valley-selective Floquet Chern flat bands in twisted multilayer graphene. Phys. Rev. B 103, 195146 [2021].

    ADS Google Scholar

  118. 118.

    Vogl, M., Rodriguez-Vega, M., Flebus, B., MacDonald, A. H. & Fiete, G. A. Floquet engineering of topological transitions in a twisted transition metal dichalcogenide homobilayer. Phys. Rev. B 103, 014310 [2021].

    ADS Google Scholar

  119. 119.

    Rodriguez-Vega, M., Vogl, M. & Fiete, G. A. Floquet engineering of twisted double bilayer graphene. Phys. Rev. Res. 2, 033494 [2020].

    Google Scholar

  120. 120.

    Chono, H., Takasan, K. & Yanase, Y. Laser-induced topological s-wave superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 102, 174508 [2020].

    ADS Google Scholar

  121. 121.

    Ge, R.-C. & Kolodrubetz, M. Floquet engineering of lattice structure and dimensionality in twisted moiré heterobilayers. Preprint at arXiv //arxiv.org/abs/2103.09874 [2021].

  122. 122.

    Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184188 [2020].

    MathSciNet Google Scholar

  123. 123.

    Lisi, S. et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 17, 189193 [2020].

    Google Scholar

  124. 124.

    Aeschlimann, S. et al. Survival of FloquetBloch states in the presence of scattering. Nano Lett. 21, 50285035 [2021].

    ADS Google Scholar

  125. 125.

    Wood, R. M. Laser-Induced Damage of Optical Materials [CRC Press, 2003].

  126. 126.

    Carr, C. W., Radousky, H. B. & Demos, S. G. Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms. Phys. Rev. Lett. 91, 127402 [2003].

    ADS Google Scholar

  127. 127.

    Deng, Z. & Eberly, J. H. Multiphoton absorption above ionization threshold by atoms in strong laser fields. J. Opt. Soc. Am. B 2, 486493 [1985].

    ADS Google Scholar

  128. 128.

    Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396400 [2018].

    ADS Google Scholar

  129. 129.

    Gauthier, A. et al. Tuning time and energy resolution in time-resolved photoemission spectroscopy with nonlinear crystals. J. Appl. Phys. 128, 093101 [2020].

    ADS Google Scholar

  130. 130.

    Mathias, S. et al. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev. Sci. Instrum. 78, 083105 [2007].

    ADS Google Scholar

  131. 131.

    Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 [2007].

    ADS Google Scholar

  132. 132.

    Kiryukhin, V. et al. An X-ray-induced insulatormetal transition in a magnetoresistive manganite. Nature 386, 813815 [1997].

    ADS Google Scholar

  133. 133.

    Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 42574260 [1997].

    ADS Google Scholar

  134. 134.

    Fiebig, M. Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3. Science 280, 19251928 [1998].

    ADS Google Scholar

  135. 135.

    Baum, P., Yang, D.-S. & Zewail, A. H. 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788792 [2007].

    ADS Google Scholar

  136. 136.

    Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 [2001].

    ADS Google Scholar

  137. 137.

    Cavalleri, A., Dekorsy, T., Chong, H. H. W., Kieffer, J. C. & Schoenlein, R. W. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B 70, 161102 [2004].

    ADS Google Scholar

  138. 138.

    Kübler, C. et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Phys. Rev. Lett. 99, 116401 [2007].

    ADS Google Scholar

  139. 139.

    Pashkin, A. et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 [2011].

    ADS Google Scholar

  140. 140.

    Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 16491652 [2008].

    ADS Google Scholar

  141. 141.

    Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490493 [2011].

    ADS Google Scholar

  142. 142.

    Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799802 [2010].

    ADS Google Scholar

  143. 143.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177180 [2014].

    ADS Google Scholar

  144. 144.

    Stevens, C. J. et al. Evidence for two-component high-temperature superconductivity in the femtosecond optical response of YBa2Cu3O7δ. Phys. Rev. Lett. 78, 22122215 [1997].

    ADS Google Scholar

  145. 145.

    Demsar, J., Podobnik, B., Kabanov, V. V., Wolf, T. & Mihailovic, D. Superconducting gap Δc, the pseudogap Δp, and pair fluctuations above Tc in overdoped Y1xCaxBa2Cu3O7δ from femtosecond time-domain spectroscopy. Phys. Rev. Lett. 82, 49184921 [1999].

    ADS Google Scholar

  146. 146.

    Kabanov, V. V., Demsar, J., Podobnik, B. & Mihailovic, D. Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa2Cu3O7δ. Phys. Rev. B 59, 14971506 [1999].

    ADS Google Scholar

  147. 147.

    Kaindl, R. A. Ultrafast mid-infrared response of YBa2Cu3O7-δ. Science 287, 470473 [2000].

    ADS Google Scholar

  148. 148.

    Kaindl, R. A. et al. Far-Infrared optical conductivity gap in superconducting MgB2 films. Phys. Rev. Lett. 88, 027003 [2001].

    ADS Google Scholar

  149. 149.

    Gedik, N., Yang, D.-S., Logvenov, G., Bozovic, I. & Zewail, A. H. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425429 [2007].

    ADS Google Scholar

  150. 150.

    Graf, J. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pumpprobe angle-resolved photoemission. Nat. Phys. 7, 805809 [2011].

    Google Scholar

  151. 151.

    Smallwood, C. L. et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 11371139 [2012].

    ADS Google Scholar

  152. 152.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 7173 [2014].

    ADS Google Scholar

  153. 153.

    Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and X-ray free-electron laser. Science 357, 7175 [2017].

    ADS Google Scholar

  154. 154.

    Dornes, C. et al. The ultrafast Einsteinde Haas effect. Nature 565, 209212 [2019].

    ADS Google Scholar

  155. 155.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 7274 [2007].

    ADS Google Scholar

  156. 156.

    Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 [2017].

    ADS Google Scholar

  157. 157.

    Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 10751079 [2019].

    ADS Google Scholar

  158. 158.

    Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937941 [2020].

    Google Scholar

  159. 159.

    Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607611 [2021].

    ADS Google Scholar

  160. 160.

    Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 [2016].

    ADS Google Scholar

  161. 161.

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705711 [2014].

    ADS Google Scholar

  162. 162.

    Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611618 [2021].

    Google Scholar

  163. 163.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461464 [2016].

    ADS Google Scholar

  164. 164.

    Denny, S. J., Clark, S. R., Laplace, Y., Cavalleri, A. & Jaksch, D. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 [2015].

    ADS Google Scholar

  165. 165.

    Knap, M., Babadi, M., Refael, G., Martin, I. & Demler, E. Dynamical Cooper pairing in nonequilibrium electron-phonon systems. Phys. Rev. B 94, 214504 [2016].

    ADS Google Scholar

  166. 166.

    Babadi, M., Knap, M., Martin, I., Refael, G. & Demler, E. Theory of parametrically amplified electron-phonon superconductivity. Phys. Rev. B 96, 014512 [2017].

    ADS Google Scholar

  167. 167.

    Cantaluppi, A. et al. Pressure tuning of light-induced superconductivity in K3C60. Nat. Phys. 14, 837841 [2018].

    Google Scholar

  168. 168.

    Schwarz, L. et al. Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors. Nat. Commun. 11, 287 [2020].

    ADS Google Scholar

  169. 169.

    Hoegen, A. V. et al. Parametrically amplified phase-incoherent superconductivity in YBa2Cu3O6+x. Preprint at arXiv //arxiv.org/abs/1911.08284 [2020].

  170. 170.

    Dai, Z. & Lee, P. A. Superconductinglike response in a driven gapped bosonic system. Phys. Rev. B 104, 054512 [2021].

    ADS Google Scholar

  171. 171.

    Dai, Z. & Lee, P. A. Superconducting-like response in driven systems near the Mott transition. Preprint at arXiv //arxiv.org/abs/2106.08354 [2021].

  172. 172.

    Wang, Y., Chen, C. C., Moritz, B. & Devereaux, T. P. Light-enhanced spin fluctuations and d-wave superconductivity at a phase boundary. Phys. Rev. Lett. 120, 246402 [2018].

    ADS Google Scholar

  173. 173.

    Schlawin, F. & Jaksch, D. Cavity-mediated unconventional pairing in ultracold fermionic atoms. Phys. Rev. Lett. 123, 133601 [2019].

    ADS Google Scholar

  174. 174.

    Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron-photon superconductivity. Phys. Rev. Lett. 122, 133602 [2019].

    ADS Google Scholar

  175. 175.

    Tindall, J. et al. Dynamical order and superconductivity in a frustrated many-body system. Phys. Rev. Lett. 125, 137001 [2020].

    ADS Google Scholar

  176. 176.

    Gao, H., Schlawin, F., Buzzi, M., Cavalleri, A. & Jaksch, D. Photoinduced electron pairing in a driven cavity. Phys. Rev. Lett. 125, 053602 [2020].

    ADS Google Scholar

  177. 177.

    Buzzi, M. et al. Photomolecular high-temperature superconductivity. Phys. Rev. X 10, 031028 [2020].

    Google Scholar

  178. 178.

    Buzzi, M. et al. Higgs-mediated optical amplification in a nonequilibrium superconductor. Phys. Rev. X 11, 011055 [2021].

    Google Scholar

  179. 179.

    Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 [2019].

    ADS Google Scholar

  180. 180.

    Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 [2018].

    ADS Google Scholar

  181. 181.

    Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416420 [2018].

    ADS Google Scholar

  182. 182.

    Yang, S. L. et al. Mode-selective coupling of coherent phonons to the Bi2212 electronic band structure. Phys. Rev. Lett. 122, 176403 [2019].

    ADS Google Scholar

  183. 183.

    Beck, M. et al. Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. Phys. Rev. Lett. 107, 177007 [2011].

    ADS Google Scholar

  184. 184.

    Matsunaga, R. & Shimano, R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Phys. Rev. Lett. 109, 187002 [2012].

    ADS Google Scholar

  185. 185.

    Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 [2013].

    ADS Google Scholar

  186. 186.

    Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 11451149 [2014].

    ADS MathSciNet MATH Google Scholar

  187. 187.

    Sherman, D. et al. The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11, 188192 [2015].

    Google Scholar

  188. 188.

    Matsunaga, R. et al. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 96, 020505[R] [2017].

    ADS Google Scholar

  189. 189.

    Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2CaCu2O8+x driven by an intense terahertz pulse. Phys. Rev. Lett. 120, 117001 [2018].

    ADS Google Scholar

  190. 190.

    Chu, H. et al. Phase-resolved Higgs response in superconducting cuprates. Nat. Commun. 11, 1793 [2020].

    ADS Google Scholar

  191. 191.

    Vaswani, C. et al. Light quantum control of persisting Higgs modes in iron-based superconductors. Nat. Commun. 12, 258 [2021].

    Google Scholar

  192. 192.

    Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 359, 575579 [2018].

    ADS MathSciNet MATH Google Scholar

  193. 193.

    Giorgianni, F. et al. Leggett mode controlled by light pulses. Nat. Phys. 15, 341346 [2019].

    Google Scholar

  194. 194.

    Leggett, A. J. Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36, 901930 [1966].

    ADS Google Scholar

  195. 195.

    Yang, X. et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater. 17, 586591 [2018].

    ADS Google Scholar

  196. 196.

    Yang, X. et al. Lightwave-driven gapless superconductivity and forbidden quantum beats by terahertz symmetry breaking. Nat. Photonics 13, 707713 [2019].

    ADS Google Scholar

  197. 197.

    Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 [2011].

    ADS Google Scholar

  198. 198.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 [2016].

    ADS Google Scholar

  199. 199.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 [2017].

    ADS Google Scholar

  200. 200.

    Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625628 [2015].

    ADS Google Scholar

  201. 201.

    Sorgenfrei, N. L. A. N. et al. Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide. Adv. Mater. 33, 2006957 [2021].

    Google Scholar

  202. 202.

    Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 1, e1500168 [2015].

    ADS Google Scholar

  203. 203.

    Sun, K. et al. Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS2xSex. Sci. Adv. 4, eaas9660 [2018].

    ADS Google Scholar

  204. 204.

    Shi, X. et al. Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe2 mediated by mode-selective electron-phonon coupling. Sci. Adv. 5, eaav4449 [2019].

    ADS Google Scholar

  205. 205.

    Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159163 [2019].

    Google Scholar

  206. 206.

    Zhang, Y. et al. Creation of a novel inverted charge density wave state. Preprint at arXiv //arxiv.org/abs/2011.07623 [2020].

  207. 207.

    Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 2731 [2018].

    Google Scholar

  208. 208.

    Vogelgesang, S. et al. Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction. Nat. Phys. 14, 184190 [2017].

    Google Scholar

  209. 209.

    Duan, S. et al. Optical manipulation of electronic dimensionality in a quantum material. Nature 595, 239244 [2021].

    ADS Google Scholar

  210. 210.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495498 [2015].

    ADS Google Scholar

  211. 211.

    Zhang, K. et al. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2. Nat. Commun. 7, 13552 [2016].

    ADS Google Scholar

  212. 212.

    Li, P. et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 [2017].

    ADS Google Scholar

  213. 213.

    Hein, P. et al. Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2. Nat. Commun. 11, 2613 [2020].

    ADS Google Scholar

  214. 214.

    Gao, Y. & Zhang, F. Current-induced second harmonic generation of Dirac or Weyl semimetals in a strong magnetic field. Phys. Rev. B 103, L041301 [2021].

    ADS Google Scholar

  215. 215.

    Nicolas, S. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Preprint at arXiv //arxiv.org/abs/2005.10308 [2020].

  216. 216.

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438442 [2009].

    Google Scholar

  217. 217.

    Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919922 [2009].

    ADS Google Scholar

  218. 218.

    Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 [2011].

    ADS Google Scholar

  219. 219.

    Park, C.-H. & Louie, S. G. Spin polarization of photoelectrons from topological insulators. Phys. Rev. Lett. 109, 097601 [2012].

    ADS Google Scholar

  220. 220.

    Park, S. R. et al. Chiral orbital-angular momentum in the surface states of Bi2Se3. Phys. Rev. Lett. 108, 046805 [2012].

    ADS Google Scholar

  221. 221.

    Mirhosseini, H. & Henk, J. Spin texture and circular dichroism in photoelectron spectroscopy from the topological insulator Bi2Te3: first-principles photoemission calculations. Phys. Rev. Lett. 109, 036803 [2012].

    ADS Google Scholar

  222. 222.

    Wang, Y. & Gedik, N. Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators. Phys. Status Solidi RRL 7, 6471 [2013].

    Google Scholar

  223. 223.

    Jiang, J. et al. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett. 115, 166601 [2015].

    ADS Google Scholar

  224. 224.

    Xu, D.-F. et al. Observation of Fermi arcs in non-centrosymmetric Weyl semi-metal candidate NbP. Chin. Phys. Lett. 32, 107101 [2015].

    ADS Google Scholar

  225. 225.

    Yu, R., Weng, H., Fang, Z., Ding, H. & Dai, X. Determining the chirality of Weyl fermions from circular dichroism spectra in time-dependent angle-resolved photoemission. Phys. Rev. B 93, 205133 [2016].

    ADS Google Scholar

  226. 226.

    Zhu, Z. H. et al. Photoelectron spin-polarization control in the topological insulator Bi2Se3. Phys. Rev. Lett. 112, 076802 [2014].

    ADS Google Scholar

  227. 227.

    Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 [2011].

    ADS Google Scholar

  228. 228.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109162 [2009].

    ADS Google Scholar

  229. 229.

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 [2007].

    ADS Google Scholar

  230. 230.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343350 [2014].

    Google Scholar

  231. 231.

    San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 [2009].

    ADS Google Scholar

  232. 232.

    Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330352 [1929].

    ADS MATH Google Scholar

  233. 233.

    Baik, S. S., Kim, K. S., Yi, Y. & Choi, H. J. Emergence of two-dimensional massless Dirac fermions, chiral pseudospins, and Berrys phase in potassium doped few-layer black phosphorus. Nano Lett. 15, 77887793 [2015].

    ADS Google Scholar

  234. 234.

    Mucha-Kruczyński, M. et al. Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Phys. Rev. B 77, 195403 [2008].

    ADS Google Scholar

  235. 235.

    Liu, Y., Bian, G., Miller, T. & Chiang, T. C. Visualizing electronic chirality and Berry phases in graphene systems using photoemission with circularly polarized light. Phys. Rev. Lett. 107, 166803 [2011].

    ADS Google Scholar

  236. 236.

    Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 [2011].

    ADS Google Scholar

  237. 237.

    Bao, C. et al. Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene. Phys. Rev. Lett. 1226, 206804 [2021].

    ADS Google Scholar

  238. 238.

    Bao, C. & Zhou, S. Black phosphorous for pseudospintronics. Nat. Mater. 19, 263264 [2020].

    ADS Google Scholar

  239. 239.

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634638 [2013].

    ADS Google Scholar

  240. 240.

    Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 12051208 [2014].

    ADS Google Scholar

  241. 241.

    Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842847 [2017].

    Google Scholar

  242. 242.

    Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. //doi.org/10.1038/s41563-021-00992-7 [2021].

    Article Google Scholar

  243. 243.

    Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262265 [2016].

    Google Scholar

  244. 244.

    Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621636 [2020].

    ADS Google Scholar

  245. 245.

    Von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 55905596 [1981].

    ADS Google Scholar

  246. 246.

    Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 53375352 [2000].

    ADS Google Scholar

  247. 247.

    Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350355 [2016].

    Google Scholar

  248. 248.

    Yang, X., Burch, K. & Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. Preprint at arXiv //arxiv.org/abs/1712.09363 [2018].

  249. 249.

    Choi, Y.-G., Doan, M.-H., Kim, Y. & Choi, G.-M. Nonlinear optical Hall effect in Weyl semimetal WTe2. Preprint at arXiv //arxiv.org/abs/2103.08173 [2021].

  250. 250.

    Fei, R., Song, W. & Yang, L. Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators. Phys. Rev. B 102, 035440 [2020].

    ADS Google Scholar

  251. 251.

    Holder, T., Kaplan, D. & Yan, B. Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion. Phys. Rev. Res. 2, 033100 [2020].

    Google Scholar

  252. 252.

    Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials. NPJ Comput. Mater. 6, 199 [2020].

    ADS Google Scholar

  253. 253.

    Jia, L., Zhang, Z., Yang, D. Z., Si, M. S. & Zhang, G. P. Probing magnetic configuration-mediated topological phases via high harmonic generation in MnBi2Te4. Phys. Rev. B 102, 174314 [2020].

    ADS Google Scholar

  254. 254.

    Watanabe, H. & Yanase, Y. Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X 11, 011001 [2021].

    Google Scholar

  255. 255.

    Matsuda, T. et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 [2020].

    ADS Google Scholar

  256. 256.

    de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 [2017].

    ADS Google Scholar

  257. 257.

    Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 [2018].

    ADS Google Scholar

  258. 258.

    Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 [2020].

    ADS Google Scholar

  259. 259.

    Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 [2021].

    Google Scholar

  260. 260.

    Avdoshkin, A., Kozii, V. & Moore, J. E. Interactions remove the quantization of the chiral photocurrent at Weyl points. Phys. Rev. Lett. 124, 196603 [2020].

    ADS Google Scholar

  261. 261.

    Mandal, I. Effect of interactions on the quantization of the chiral photocurrent for double-Weyl semimetals. Symmetry 12, 919 [2020].

    Google Scholar

  262. 262.

    Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763767 [2020].

    ADS MathSciNet Google Scholar

  263. 263.

    Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photonics 13, 146157 [2019].

    ADS Google Scholar

  264. 264.

    Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239242 [1998].

    ADS Google Scholar

  265. 265.

    Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 17231726 [2011].

    ADS Google Scholar

  266. 266.

    Neugebauer, M. J. et al. Optical control of vibrational coherence triggered by an ultrafast phase transition. Phys. Rev. B 99, 220302[R] [2019].

    ADS Google Scholar

  267. 267.

    Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 [2017].

    ADS MathSciNet Google Scholar

  268. 268.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 [2019].

    ADS MathSciNet Google Scholar

  269. 269.

    Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349357 [2019].

    Google Scholar

  270. 270.

    Stefanucci, G. & van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems [Cambridge Univ. Press, 2013].

  271. 271.

    Sieberer, L. M., Buchhold, M. & Diehl, S. Keldysh field theory for driven open quantum systems. Rep. Prog. Phys. 79, 096001 [2016].

    ADS Google Scholar

  272. 272.

    Ullrich, C. A. Time-Dependent Density-Functional Theory [Oxford Univ. Press, 2011].

  273. 273.

    Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U. & Rubio, A. Fundamentals of Time-Dependent Density Functional Theory [Springer, 2012].

  274. 274.

    Sato, S. A. & Rubio, A. Nonlinear electric conductivity and THz-induced charge transport in graphene. New J. Phys. 23, 063047 [2021].

    ADS Google Scholar

  275. 275.

    Seibold, G. & Lorenzana, J. Time-dependent Gutzwiller approximation for the Hubbard model. Phys. Rev. Lett. 86, 26052608 [2001].

    ADS Google Scholar

  276. 276.

    Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143224 [2008].

    ADS Google Scholar

  277. 277.

    Werner, P., Oka, T. & Millis, A. J. Diagrammatic Monte Carlo simulation of nonequilibrium systems. Phys. Rev. B 79, 035320 [2009].

    ADS Google Scholar

  278. 278.

    Schiró, M. & Fabrizio, M. Time-dependent mean field theory for quench dynamics in correlated electron systems. Phys. Rev. Lett. 105, 076401 [2010].

    ADS Google Scholar

  279. 279.

    Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96192 [2011].

    ADS MathSciNet MATH Google Scholar

  280. 280.

    Werner, P., Tsuji, N. & Eckstein, M. Nonthermal symmetry-broken states in the strongly interacting Hubbard model. Phys. Rev. B 86, 205101 [2012].

    ADS Google Scholar

  281. 281.

    Kennes, D. M., Jakobs, S. G., Karrasch, C. & Meden, V. Renormalization group approach to time-dependent transport through correlated quantum dots. Phys. Rev. B 85, 085113 [2012].

    ADS Google Scholar

  282. 282.

    Ashida, Y., İmamoğlu, A. & Demler, E. Cavity quantum electrodynamics at arbitrary light-matter coupling strengths. Phys. Rev. Lett. 126, 153603 [2021].

    ADS MathSciNet Google Scholar

  283. 283.

    Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 1940 [2019].

    Google Scholar

  284. 284.

    Juraschek, D. M., Neuman, T., Flick, J. & Narang, P. Cavity control of nonlinear phononics. Phys. Rev. Res. 3, L032046 [2021].

    Google Scholar

  285. 285.

    Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438442 [2020].

    ADS Google Scholar

  286. 286.

    Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 [2020].

    Google Scholar

  287. 287.

    Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 [2021].

    Google Scholar

  288. 288.

    Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622627 [2019].

    ADS Google Scholar

  289. 289.

    Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 6165 [2021].

    ADS Google Scholar

  290. 290.

    Delplace, P., Gómez-León, Á. & Platero, G. Merging of Dirac points and Floquet topological transitions in ac-driven graphene. Phys. Rev. B 88, 245422 [2013].

    ADS Google Scholar

  291. 291.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 10771088 [2017].

    ADS Google Scholar

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [grant nos. 11725418, 11427903 and 12034001], National Key R&D Program of China [grant nos. 2020YFA0308800 and 2016YFA0301004], Tsinghua University Initiative Scientific Research Program and Tohoku-Tsinghua Collaborative Research Fund, Beijing Advanced Innovation Center for Future Chip [ICFC], Beijing Nature Science Foundation [JQ19001].

Author information

Affiliations

  1. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China

    Changhua Bao&Shuyun Zhou

  2. School of Materials Science and Engineering, Beihang University, Beijing, China

    Peizhe Tang

  3. Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Hamburg, Germany

    Peizhe Tang

  4. International Center for Quantum Materials, Peking University, Beijing, China

    Dong Sun

  5. Frontier Science Center for Quantum Information, Beijing, China

    Shuyun Zhou

Authors
  1. Changhua Bao
    View author publications

    You can also search for this author in PubMedGoogle Scholar

  2. Peizhe Tang
    View author publications

    You can also search for this author in PubMedGoogle Scholar

  3. Dong Sun
    View author publications

    You can also search for this author in PubMedGoogle Scholar

  4. Shuyun Zhou
    View author publications

    You can also search for this author in PubMedGoogle Scholar

Contributions

All authors contributed to the discussion of the content and writing of the article.

Corresponding authors

Correspondence to Peizhe Tang, Dong Sun or Shuyun Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publishers note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Multiphoton dressed states

The electronic states that are influenced by the optical field through virtual absorption or emission of multiple photons.

Volkov states

Free electron states in the field of an electromagnetic wave in vacuum. In solids, they refer to multiphonon dressed states of free-electron-like photoemission final states in the vacuum, in analogy to Floquet states, which are multiphonon dressed states of the electronic states inside the solids.

High harmonic generation

The emission of light at a higher harmonic [\[n\hbar \omega \]] of the fundamental laser [\[\hbar \omega \]] through a nonlinear optical process.

Stripe phase

1D modulation of charges. In cuprate superconductors, this refers to the concentration of doped charges along spontaneously generated domain walls between antiferromagnetic insulating regions.

1/8 Anomaly

The anomalous suppression of superconductivity in cuprate La2xBaxCuO4 [and certain related compounds] near x = 1/8 doping.

Leggett mode

Collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters.

Stark effect

The shifting and splitting of spectral lines of atoms and molecules owing to the presence of an external electrical field. If an oscillating electric field [like a laser] is applied, it corresponds to an ac [optical] Stark effect.

Berry connection

An effective vector potential to describe the geometrical property of an energy band in the momentum space of crystalline solids, which is defined as \[A=\langle \psi | i{\nabla }_{k}| \psi \rangle \], where \[| \psi \rangle \] is the eigenstate of the system.

Berry curvature

A local gauge field to describe the geometrical property of an energy band, which is defined as Ω =  × A, where A is the Berry connection.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bao, C., Tang, P., Sun, D. et al. Light-induced emergent phenomena in 2D materials and topological materials. Nat Rev Phys 4, 3348 [2022]. //doi.org/10.1038/s42254-021-00388-1

Download citation

  • Accepted: 04 October 2021

  • Published: 09 November 2021

  • Issue Date: January 2022

  • DOI: //doi.org/10.1038/s42254-021-00388-1

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Video liên quan

Chủ Đề