Lập được bao nhiêu số chia hết cho 15

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} \,\,\left[ {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},\,\,a \ne b \ne c \ne d} \right]\].

Vì \[\overline {abcd} \,\, \vdots \,\,15\] nên \[\left\{ \begin{array}{l}\overline {abcd} \,\, \vdots \,\,5 \Rightarrow d \in \left\{ {0;5} \right\}\\\overline {abcd} \,\, \vdots \,\,3\end{array} \right.\].

+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c\,\, \vdots \,\,3\].

Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};\,\,\left\{ {1;3;5} \right\};\,\,\left\{ {2;3;4} \right\};\,\,\left\{ {3;4;5} \right\}\].

\[ \Rightarrow \] có \[4.3! = 24\] cách chọn \[a,\,\,b,\,\,c\].

\[ \Rightarrow \] Có 24 số thỏa mãn.

TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5\,\, \vdots \,\,3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.

Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};\,\,\left\{ {1;2;4} \right\};\,\,\left\{ {0;3;4} \right\}\].

Chọn C

Gọi số cần tìm là N = abcd¯ . Do N chia hết cho 15 nên N phải chia hết cho 3 và 5, vì vậy d có 1 cách chọn là bằng 5 và a + b + c + d chia hết cho 3.

Do vai trò các chữ số a, b, c như nhau, mỗi số a và b có 9 cách chọn nên ta xét các trường hợp:

TH1: a + b + d chia hết cho 3, khi đó c ⋮ 3 => c ∈{3;6;9}, suy ra có 3 cách chọn c.

TH2: a + b + d chia 3 dư 1, khi đó c chia 3 dư 2 => c∈{2;5;8}, suy ra có 3 cách chọn c.

TH3: a + b + d chia 3 dư 2, khi đó c chia 3 dư 1 => c ∈ {1;4;7} suy ra có 3 cách chọn.

Vậy trong mọi trường hợp đều có 3 cách chọn c nên có tất cả: 9.9.3.1 = 243 số thỏa mãn.

Ta có  

• TH1. Nếu d = 0 thì a + b + c chia hết cho 3  

Mỗi bộ sau đều lập được 6 số: [1;2;3],[1;2;6],[1;3;5],[1;5;6],[2;3;7],[2;6;7],[3;5;7],[5;6;7]

• TH2. Nếu d = 5 thì a + b + c + 5 chia hết cho 3 

Mỗi bộ sau đều lập được 4 số: [0;1;3];[0;1;6];[0; 3; 7];  [0;6;7].

Mỗi bộ sau đều lập được 6 số: [1;2;7];[1;3;6]; [3;6;7]

Tóm lại có tất cả 6.8+4.4+6.3=82 số thỏa mãn.

Chọn B.

Phương pháp giải:

- Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.

- Xét các trường hợp sau:

   TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \].

             + \[a,\,\,b,\,\,c \equiv 3\,\,\left[ {\bmod 1} \right] \Rightarrow a,\,\,b,\,\,c \in \left\{ {1;4;7} \right\}\].

             + \[a,\,\,b,\,\,c \equiv 3\,\,\left[ {\bmod 2} \right] \Rightarrow a,\,\,b,\,\,c \in \left\{ {2;5;8} \right\}\].

             + Trong 3 số \[a,\,\,b,\,\,c\] có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

   TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \].

             + Trong 3 số \[a,\,\,b,\,\,c\] có 2 số chia hết cho 3, 1 số chia 3 dư 1.

             + Trong 3 số \[a,\,\,b,\,\,c\] có 1 số chia hết cho 3, 2 số chia 3 dư 3.

             + Trong 3 số \[a,\,\,b,\,\,c\] có 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Lời giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} \,\,\left[ {a \ne 0} \right]\].

Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.

\[ \Rightarrow d \in \left\{ {0;5} \right\}\].

TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \].

Để số cần tìm chia hết cho 3 thì \[a + b + c\,\, \vdots \,\,3\].

Ta có các nhóm: \[\left\{ \begin{array}{l}\left\{ {0;9} \right\}\,\, \equiv \,\,3\left[ {\bmod 0} \right]\\\left\{ {1;4;7} \right\} \equiv 3\,\,\left[ {\bmod 1} \right]\\\left\{ {2;8} \right\} \equiv 3\,\,\left[ {\bmod 2} \right]\end{array} \right.\]

Chủ Đề