Which of the following operators reverses the meaning of a test statement?

Fortran has five LOGICAL operators that can only be used with expressions whose results are logical values (i.e., .TRUE. or .FALSE.). All LOGICAL operators have priorities lower than arithmetic and relational operators. Therefore, if an expression involving arithmetic, relational and logical operators, the arithmetic operators are evaluated first, followed by the relational operators, followed by the logical operators.

Show

These five logical operators are

  • .NOT. : logical not
  • .AND. : logical and
  • .OR. : logical or
  • .EQV. : logical equivalence
  • .NEQV. : logical not equivalence
The following is a table of these operators, including there priority and associativity.TypeOperatorAssociativityArithmetic**right to left*/left to right+-left to rightRelational<<=>>===/=noneLogical.NOT.right to left.AND.left to right.OR.left to right.EQV..NEQV.left to right

Truth Tables

The evaluation of logical expressions is determined by truth tables. Let us start with the .NOT. operator..NOT.OperandResult.TRUE..FALSE..FALSE..TRUE.

Note that .NOT. is a unary operator. Therefore, .NOT. a yields .TRUE. (resp., .FALSE.) if the value of LOGICAL variable a is .FALSE. (resp., .TRUE.).


The following is the truth table of .AND.:.AND..TRUE..FALSE.TRUE..TRUE..FALSE..FALSE..FALSE..FALSE.

Therefore, the result of logical expression a .NEQV. b is .TRUE. if and only if both operands a and b do not have the same value. As mentioned in relational expressions, relational operators can only compare arithmetic values and cannot be used to compare logical values. To compare if two logical values are not equal, use .NEQV. Note that .NEQV is the opposite of .EQV.. Hence, to test if logical variables x and y have different values, one can use .NOT. (x .EQV. y). Here, if x and y have the same value, x .EQV. y is .TRUE. and .NOT. (x .EQV. y) is .FALSE. On the other hand, if x and y have different values, x .EQV. y is .FALSE. and .NOT. (x .EQV. y) is .TRUE.

This chapter describes JavaScript's expressions and operators, including assignment, comparison, arithmetic, bitwise, logical, string, ternary and more.

At a high level, an expression is a valid unit of code that resolves to a value. There are two types of expressions: those that have side effects (such as assigning values) and those that purely evaluate.

The expression

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
8 is an example of the first type. This expression uses the
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
9 operator to assign the value seven to the variable
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0. The expression itself evaluates to
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
1.

The expression

const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
2 is an example of the second type. This expression uses the
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3 operator to add
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
4 and
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
5 together and produces a value,
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
1. However, if it's not eventually part of a bigger construct (for example, a like
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
7), its result will be immediately discarded — this is usually a programmer mistake because the evaluation doesn't produce any effects.

As the examples above also illustrate, all complex expressions are joined by operators, such as

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
9 and
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3. In this section, we will introduce the following operators:

These operators join operands either formed by higher-precedence operators or one of the . A complete and detailed list of operators and expressions is also available in the reference.

The precedence of operators determines the order they are applied when evaluating an expression. For example:

const x = 1 + 2 * 3;
const y = 2 * 3 + 1;

Despite

// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
0 and
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3 coming in different orders, both expressions would result in
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
1 because
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
0 has precedence over
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3, so the
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
0-joined expression will always be evaluated first. You can override operator precedence by using parentheses (which creates a — the basic expression). To see a complete table of operator precedence as well as various caveats, see the page.

JavaScript has both binary and unary operators, and one special ternary operator, the conditional operator. A binary operator requires two operands, one before the operator and one after the operator:

operand1 operator operand2

For example,

const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
2 or
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
7. This form is called an infix binary operator, because the operator is placed between two operands. All binary operators in JavaScript are infix.

A unary operator requires a single operand, either before or after the operator:

operator operand
operand operator

For example,

// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
8 or
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
9. The
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
0 form is called a prefix unary operator, and the
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
1 form is called a postfix unary operator.
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
2 and
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
3 are the only postfix operators in JavaScript — all other operators, like
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
4,
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5, etc. are prefix.

An assignment operator assigns a value to its left operand based on the value of its right operand. The simple assignment operator is equal (

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
9), which assigns the value of its right operand to its left operand. That is,
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
7 is an assignment expression that assigns the value of
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
8 to
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0.

There are also compound assignment operators that are shorthand for the operations listed in the following table:

NameShorthand operatorMeaningAssignment
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
7
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
7Addition assignment
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
2
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
3Subtraction assignment
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
4
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
5Multiplication assignment
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
6
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
7Division assignment
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
8
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
9Remainder assignment
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
0
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
1Exponentiation assignment
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
2
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
3Left shift assignment
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
4
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
5Right shift assignment
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
6
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
7Unsigned right shift assignment
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
8
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
9Bitwise AND assignment
operand1 operator operand2
00
operand1 operator operand2
01Bitwise XOR assignment
operand1 operator operand2
02
operand1 operator operand2
03Bitwise OR assignment
operand1 operator operand2
04
operand1 operator operand2
05Logical AND assignment
operand1 operator operand2
06
operand1 operator operand2
07Logical OR assignment
operand1 operator operand2
08
operand1 operator operand2
09Nullish coalescing assignment
operand1 operator operand2
10
operand1 operator operand2
11

If an expression evaluates to an object, then the left-hand side of an assignment expression may make assignments to properties of that expression. For example:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.

For more information about objects, read Working with Objects.

If an expression does not evaluate to an object, then assignments to properties of that expression do not assign:

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.

In , the code above throws, because one cannot assign properties to primitives.

It is an error to assign values to unmodifiable properties or to properties of an expression without properties (

operand1 operator operand2
12 or
operand1 operator operand2
13).

For more complex assignments, the destructuring assignment syntax is a JavaScript expression that makes it possible to extract data from arrays or objects using a syntax that mirrors the construction of array and object literals.

const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;

In general, assignments are used within a variable declaration (i.e., with

operand1 operator operand2
14,
operand1 operator operand2
15, or
operand1 operator operand2
16) or as standalone statements).

// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().

However, like other expressions, assignment expressions like

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
7 evaluate into a result value. Although this result value is usually not used, it can then be used by another expression.

Chaining assignments or nesting assignments in other expressions can result in surprising behavior. For this reason, some JavaScript style guides ). Nevertheless, assignment chaining and nesting may occur sometimes, so it is important to be able to understand how they work.

By chaining or nesting an assignment expression, its result can itself be assigned to another variable. It can be logged, it can be put inside an array literal or function call, and so on.

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));

The evaluation result matches the expression to the right of the

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
9 sign in the "Meaning" column of the table above. That means that
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
7 evaluates into whatever
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
8's result is,
function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;
2 evaluates into the resulting sum
operand1 operator operand2
22,
y = x = f()
y = [ f(), x = g() ]
x[f()] = g()
2 evaluates into the resulting power
operand1 operator operand2
24, and so on.

In the case of logical assignments,

operand1 operator operand2
06,
operand1 operator operand2
08, and
operand1 operator operand2
10, the return value is that of the logical operation without the assignment, so
operand1 operator operand2
28,
operand1 operator operand2
29, and
operand1 operator operand2
30, respectively.

When chaining these expressions without parentheses or other grouping operators like array literals, the assignment expressions are grouped right to left (they are right-associative), but they are evaluated left to right.

Note that, for all assignment operators other than

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
9 itself, the resulting values are always based on the operands' values before the operation.

For example, assume that the following functions

operand1 operator operand2
32 and
operand1 operator operand2
33 and the variables
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 and
operand1 operator operand2
35 have been declared:

function f () {
  console.log('F!');
  return 2;
}
function g () {
  console.log('G!');
  return 3;
}
let x, y;

Consider these three examples:

y = x = f()
y = [ f(), x = g() ]
x[f()] = g()

Evaluation example 1

operand1 operator operand2
36 is equivalent to
operand1 operator operand2
37, because the assignment operator
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
9 is right-associative. However, it evaluates from left to right:

  1. The assignment expression
    operand1 operator operand2
    
    36 starts to evaluate.
    1. The
      operand1 operator operand2
      
      35 on this assignment's left-hand side evaluates into a reference to the variable named
      operand1 operator operand2
      
      35.
    2. The assignment expression
      let x;
      const y = (x = f()); // Or equivalently: const y = x = f();
      console.log(y); // Logs the return value of the assignment x = f().
      
      console.log(x = f()); // Logs the return value directly.
      
      // An assignment expression can be nested in any place
      // where expressions are generally allowed,
      // such as array literals' elements or as function calls' arguments.
      console.log([ 0, x = f(), 0 ]);
      console.log(f(0, x = f(), 0));
      
      7 starts to evaluate.
      1. The
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        0 on this assignment's left-hand side evaluates into a reference to the variable named
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        0.
      2. The function call
        let x;
        const y = (x = f()); // Or equivalently: const y = x = f();
        console.log(y); // Logs the return value of the assignment x = f().
        
        console.log(x = f()); // Logs the return value directly.
        
        // An assignment expression can be nested in any place
        // where expressions are generally allowed,
        // such as array literals' elements or as function calls' arguments.
        console.log([ 0, x = f(), 0 ]);
        console.log(f(0, x = f(), 0));
        
        8 prints "F!" to the console and then evaluates to the number
        operand1 operator operand2
        
        46.
      3. That
        operand1 operator operand2
        
        46 result from
        let x;
        const y = (x = f()); // Or equivalently: const y = x = f();
        console.log(y); // Logs the return value of the assignment x = f().
        
        console.log(x = f()); // Logs the return value directly.
        
        // An assignment expression can be nested in any place
        // where expressions are generally allowed,
        // such as array literals' elements or as function calls' arguments.
        console.log([ 0, x = f(), 0 ]);
        console.log(f(0, x = f(), 0));
        
        8 is assigned to
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        0.
    3. The assignment expression
      let x;
      const y = (x = f()); // Or equivalently: const y = x = f();
      console.log(y); // Logs the return value of the assignment x = f().
      
      console.log(x = f()); // Logs the return value directly.
      
      // An assignment expression can be nested in any place
      // where expressions are generally allowed,
      // such as array literals' elements or as function calls' arguments.
      console.log([ 0, x = f(), 0 ]);
      console.log(f(0, x = f(), 0));
      
      7 has now finished evaluating; its result is the new value of
      const foo = ['one', 'two', 'three'];
      
      // without destructuring
      const one   = foo[0];
      const two   = foo[1];
      const three = foo[2];
      
      // with destructuring
      const [one, two, three] = foo;
      
      0, which is
      operand1 operator operand2
      
      46.
    4. That
      operand1 operator operand2
      
      46 result in turn is also assigned to
      operand1 operator operand2
      
      35.
  2. The assignment expression
    operand1 operator operand2
    
    36 has now finished evaluating; its result is the new value of
    operand1 operator operand2
    
    35 – which happens to be
    operand1 operator operand2
    
    46.
    const foo = ['one', 'two', 'three'];
    
    // without destructuring
    const one   = foo[0];
    const two   = foo[1];
    const three = foo[2];
    
    // with destructuring
    const [one, two, three] = foo;
    
    0 and
    operand1 operator operand2
    
    35 are assigned to
    operand1 operator operand2
    
    46, and the console has printed "F!".

Evaluation example 2

operand1 operator operand2
61 also evaluates from left to right:

  1. The assignment expression
    operand1 operator operand2
    
    61 starts to evaluate.
    1. The
      operand1 operator operand2
      
      35 on this assignment's left-hand evaluates into a reference to the variable named
      operand1 operator operand2
      
      35.
    2. The inner array literal
      operand1 operator operand2
      
      65 starts to evaluate.
      1. The function call
        let x;
        const y = (x = f()); // Or equivalently: const y = x = f();
        console.log(y); // Logs the return value of the assignment x = f().
        
        console.log(x = f()); // Logs the return value directly.
        
        // An assignment expression can be nested in any place
        // where expressions are generally allowed,
        // such as array literals' elements or as function calls' arguments.
        console.log([ 0, x = f(), 0 ]);
        console.log(f(0, x = f(), 0));
        
        8 prints "F!" to the console and then evaluates to the number
        operand1 operator operand2
        
        46.
      2. The assignment expression
        operand1 operator operand2
        
        68 starts to evaluate.
        1. The
          const foo = ['one', 'two', 'three'];
          
          // without destructuring
          const one   = foo[0];
          const two   = foo[1];
          const three = foo[2];
          
          // with destructuring
          const [one, two, three] = foo;
          
          0 on this assignment's left-hand side evaluates into a reference to the variable named
          const foo = ['one', 'two', 'three'];
          
          // without destructuring
          const one   = foo[0];
          const two   = foo[1];
          const three = foo[2];
          
          // with destructuring
          const [one, two, three] = foo;
          
          0.
        2. The function call
          operand1 operator operand2
          
          71 prints "G!" to the console and then evaluates to the number
          const foo = ['one', 'two', 'three'];
          
          // without destructuring
          const one   = foo[0];
          const two   = foo[1];
          const three = foo[2];
          
          // with destructuring
          const [one, two, three] = foo;
          
          4.
        3. That
          const foo = ['one', 'two', 'three'];
          
          // without destructuring
          const one   = foo[0];
          const two   = foo[1];
          const three = foo[2];
          
          // with destructuring
          const [one, two, three] = foo;
          
          4 result from
          operand1 operator operand2
          
          71 is assigned to
          const foo = ['one', 'two', 'three'];
          
          // without destructuring
          const one   = foo[0];
          const two   = foo[1];
          const three = foo[2];
          
          // with destructuring
          const [one, two, three] = foo;
          
          0.
      3. The assignment expression
        operand1 operator operand2
        
        68 has now finished evaluating; its result is the new value of
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        0, which is
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        4. That
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        4 result becomes the next element in the inner array literal (after the
        operand1 operator operand2
        
        46 from the
        let x;
        const y = (x = f()); // Or equivalently: const y = x = f();
        console.log(y); // Logs the return value of the assignment x = f().
        
        console.log(x = f()); // Logs the return value directly.
        
        // An assignment expression can be nested in any place
        // where expressions are generally allowed,
        // such as array literals' elements or as function calls' arguments.
        console.log([ 0, x = f(), 0 ]);
        console.log(f(0, x = f(), 0));
        
        8).
    3. The inner array literal
      operand1 operator operand2
      
      65 has now finished evaluating; its result is an array with two values:
      operand1 operator operand2
      
      83.
    4. That
      operand1 operator operand2
      
      83 array is now assigned to
      operand1 operator operand2
      
      35.
  2. The assignment expression
    operand1 operator operand2
    
    61 has now finished evaluating; its result is the new value of
    operand1 operator operand2
    
    35 – which happens to be
    operand1 operator operand2
    
    83.
    const foo = ['one', 'two', 'three'];
    
    // without destructuring
    const one   = foo[0];
    const two   = foo[1];
    const three = foo[2];
    
    // with destructuring
    const [one, two, three] = foo;
    
    0 is now assigned to
    const foo = ['one', 'two', 'three'];
    
    // without destructuring
    const one   = foo[0];
    const two   = foo[1];
    const three = foo[2];
    
    // with destructuring
    const [one, two, three] = foo;
    
    4,
    operand1 operator operand2
    
    35 is now assigned to
    operand1 operator operand2
    
    83, and the console has printed "F!" then "G!".

Evaluation example 3

operand1 operator operand2
93 also evaluates from left to right. (This example assumes that
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 is already assigned to some object. For more information about objects, read Working with Objects.)

  1. The assignment expression
    operand1 operator operand2
    
    93 starts to evaluate.
    1. The
      operand1 operator operand2
      
      96 property access on this assignment's left-hand starts to evaluate.
      1. The
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        0 in this property access evaluates into a reference to the variable named
        const foo = ['one', 'two', 'three'];
        
        // without destructuring
        const one   = foo[0];
        const two   = foo[1];
        const three = foo[2];
        
        // with destructuring
        const [one, two, three] = foo;
        
        0.
      2. Then the function call
        let x;
        const y = (x = f()); // Or equivalently: const y = x = f();
        console.log(y); // Logs the return value of the assignment x = f().
        
        console.log(x = f()); // Logs the return value directly.
        
        // An assignment expression can be nested in any place
        // where expressions are generally allowed,
        // such as array literals' elements or as function calls' arguments.
        console.log([ 0, x = f(), 0 ]);
        console.log(f(0, x = f(), 0));
        
        8 prints "F!" to the console and then evaluates to the number
        operand1 operator operand2
        
        46.
    2. The
      operand1 operator operand2
      
      96 property access on this assignment has now finished evaluating; its result is a variable property reference:
      operator operand
      operand operator
      
      02.
    3. Then the function call
      operand1 operator operand2
      
      71 prints "G!" to the console and then evaluates to the number
      const foo = ['one', 'two', 'three'];
      
      // without destructuring
      const one   = foo[0];
      const two   = foo[1];
      const three = foo[2];
      
      // with destructuring
      const [one, two, three] = foo;
      
      4.
    4. That
      const foo = ['one', 'two', 'three'];
      
      // without destructuring
      const one   = foo[0];
      const two   = foo[1];
      const three = foo[2];
      
      // with destructuring
      const [one, two, three] = foo;
      
      4 is now assigned to
      operator operand
      operand operator
      
      02. (This step will succeed only if
      const foo = ['one', 'two', 'three'];
      
      // without destructuring
      const one   = foo[0];
      const two   = foo[1];
      const three = foo[2];
      
      // with destructuring
      const [one, two, three] = foo;
      
      0 is assigned to an object.)
  2. The assignment expression
    operand1 operator operand2
    
    93 has now finished evaluating; its result is the new value of
    operator operand
    operand operator
    
    02 – which happens to be
    const foo = ['one', 'two', 'three'];
    
    // without destructuring
    const one   = foo[0];
    const two   = foo[1];
    const three = foo[2];
    
    // with destructuring
    const [one, two, three] = foo;
    
    4.
    operator operand
    operand operator
    
    02 is now assigned to
    const foo = ['one', 'two', 'three'];
    
    // without destructuring
    const one   = foo[0];
    const two   = foo[1];
    const three = foo[2];
    
    // with destructuring
    const [one, two, three] = foo;
    
    4, and the console has printed "F!" then "G!".

Chaining assignments or nesting assignments in other expressions can result in surprising behavior. For this reason, ).

In particular, putting a variable chain in a

operand1 operator operand2
14,
operand1 operator operand2
15, or
operand1 operator operand2
16 statement often does not work. Only the outermost/leftmost variable would get declared; other variables within the assignment chain are not declared by the
operand1 operator operand2
14/
operand1 operator operand2
15/
operand1 operator operand2
16 statement. For example:

operand1 operator operand2
0

This statement seemingly declares the variables

const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0,
operand1 operator operand2
35, and
operator operand
operand operator
21. However, it only actually declares the variable
operator operand
operand operator
21.
operand1 operator operand2
35 and
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 are either invalid references to nonexistent variables (in strict mode) or, worse, would implicitly create global variables for
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 and
operand1 operator operand2
35 in sloppy mode.

A comparison operator compares its operands and returns a logical value based on whether the comparison is true. The operands can be numerical, string, logical, or object values. Strings are compared based on standard lexicographical ordering, using Unicode values. In most cases, if the two operands are not of the same type, JavaScript attempts to convert them to an appropriate type for the comparison. This behavior generally results in comparing the operands numerically. The sole exceptions to type conversion within comparisons involve the

operator operand
operand operator
27 and
operator operand
operand operator
28 operators, which perform strict equality and inequality comparisons. These operators do not attempt to convert the operands to compatible types before checking equality. The following table describes the comparison operators in terms of this sample code:

operand1 operator operand2
1

Comparison operatorsOperatorDescriptionExamples returning trueEqual (
operator operand
operand operator
29)Returns
operator operand
operand operator
30 if the operands are equal.
operator operand
operand operator
31

operator operand
operand operator
32

operator operand
operand operator
33Not equal (
operator operand
operand operator
34)Returns
operator operand
operand operator
30 if the operands are not equal.
operator operand
operand operator
36Strict equal (
operator operand
operand operator
27)Returns
operator operand
operand operator
30 if the operands are equal and of the same type. See also
operator operand
operand operator
39 and sameness in JS.
operator operand
operand operator
40Strict not equal (
operator operand
operand operator
28)Returns
operator operand
operand operator
30 if the operands are of the same type but not equal, or are of different type.
operator operand
operand operator
43Greater than (
operator operand
operand operator
44)Returns
operator operand
operand operator
30 if the left operand is greater than the right operand.
operator operand
operand operator
46Greater than or equal (
operator operand
operand operator
47)Returns
operator operand
operand operator
30 if the left operand is greater than or equal to the right operand.
operator operand
operand operator
49Less than (
operator operand
operand operator
50)Returns
operator operand
operand operator
30 if the left operand is less than the right operand.
operator operand
operand operator
52Less than or equal (
operator operand
operand operator
53)Returns
operator operand
operand operator
30 if the left operand is less than or equal to the right operand.
operator operand
operand operator
55

Note:

operator operand
operand operator
56 is not a comparison operator but rather is the notation for Arrow functions.

An arithmetic operator takes numerical values (either literals or variables) as their operands and returns a single numerical value. The standard arithmetic operators are addition (

const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3), subtraction (
operator operand
operand operator
58), multiplication (
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
0), and division (
operator operand
operand operator
60). These operators work as they do in most other programming languages when used with floating point numbers (in particular, note that division by zero produces
operator operand
operand operator
61). For example:

operand1 operator operand2
2

In addition to the standard arithmetic operations (

const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3,
operator operand
operand operator
58,
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
0,
operator operand
operand operator
60), JavaScript provides the arithmetic operators listed in the following table:

Arithmetic operatorsOperatorDescriptionExampleRemainder (
operator operand
operand operator
66)Binary operator. Returns the integer remainder of dividing the two operands.12 % 5 returns 2.Increment (
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
2)Unary operator. Adds one to its operand. If used as a prefix operator (
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
9), returns the value of its operand after adding one; if used as a postfix operator (
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
8), returns the value of its operand before adding one.If
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 is 3, then
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
9 sets
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 to 4 and returns 4, whereas
// Declares a variable x and initializes it to the result of f().
// The result of the x = f() assignment expression is discarded.
let x = f();

x = g(); // Reassigns the variable x to the result of g().
8 returns 3 and, only then, sets
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 to 4.Decrement (
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
3)Unary operator. Subtracts one from its operand. The return value is analogous to that for the increment operator.If
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 is 3, then
operator operand
operand operator
77 sets
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 to 2 and returns 2, whereas
operator operand
operand operator
79 returns 3 and, only then, sets
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 to 2.Unary negation (
operator operand
operand operator
58)Unary operator. Returns the negation of its operand.If
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
0 is 3, then
operator operand
operand operator
83 returns -3.Unary plus (
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
3)Unary operator. Attempts to , if it is not already.

operator operand
operand operator
85 returns
const foo = ['one', 'two', 'three'];

// without destructuring
const one   = foo[0];
const two   = foo[1];
const three = foo[2];

// with destructuring
const [one, two, three] = foo;
4.

operator operand
operand operator
87 returns
operator operand
operand operator
88.

Exponentiation operator (
operator operand
operand operator
89)Calculates the
operator operand
operand operator
90 to the
operator operand
operand operator
91 power, that is,
operator operand
operand operator
92
operator operand
operand operator
93 returns
operator operand
operand operator
94.
operator operand
operand operator
95 returns
operator operand
operand operator
96.

A bitwise operator treats their operands as a set of 32 bits (zeros and ones), rather than as decimal, hexadecimal, or octal numbers. For example, the decimal number nine has a binary representation of 1001. Bitwise operators perform their operations on such binary representations, but they return standard JavaScript numerical values.

The following table summarizes JavaScript's bitwise operators.

OperatorUsageDescriptionBitwise AND
operator operand
operand operator
97Returns a one in each bit position for which the corresponding bits of both operands are ones.Bitwise OR
operator operand
operand operator
98Returns a zero in each bit position for which the corresponding bits of both operands are zeros.Bitwise XOR
operator operand
operand operator
99Returns a zero in each bit position for which the corresponding bits are the same. [Returns a one in each bit position for which the corresponding bits are different.]Bitwise NOT
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
00Inverts the bits of its operand.Left shift
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
01Shifts
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
02 in binary representation
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
03 bits to the left, shifting in zeros from the right.Sign-propagating right shift
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
04Shifts
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
02 in binary representation
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
03 bits to the right, discarding bits shifted off.Zero-fill right shift
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
07Shifts
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
02 in binary representation
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
03 bits to the right, discarding bits shifted off, and shifting in zeros from the left.

Conceptually, the bitwise logical operators work as follows:

  • The operands are converted to thirty-two-bit integers and expressed by a series of bits (zeros and ones). Numbers with more than 32 bits get their most significant bits discarded. For example, the following integer with more than 32 bits will be converted to a 32-bit integer:

    operand1 operator operand2
    
    3

  • Each bit in the first operand is paired with the corresponding bit in the second operand: first bit to first bit, second bit to second bit, and so on.
  • The operator is applied to each pair of bits, and the result is constructed bitwise.

For example, the binary representation of nine is 1001, and the binary representation of fifteen is 1111. So, when the bitwise operators are applied to these values, the results are as follows:

ExpressionResultBinary Description
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
10
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
11
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
12
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
13
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
14
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
15
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
16
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
17
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
18
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
19
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
20
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
21
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
22
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
23
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
24

Note that all 32 bits are inverted using the Bitwise NOT operator, and that values with the most significant (left-most) bit set to 1 represent negative numbers (two's-complement representation).

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
25 evaluates to the same value that
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
26 evaluates to.

The bitwise shift operators take two operands: the first is a quantity to be shifted, and the second specifies the number of bit positions by which the first operand is to be shifted. The direction of the shift operation is controlled by the operator used.

Shift operators convert their operands to thirty-two-bit integers and return a result of either type

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
27 or
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
28: specifically, if the type of the left operand is
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
28, they return
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
28; otherwise, they return
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
27.

The shift operators are listed in the following table.

Bitwise shift operatorsOperatorDescriptionExampleLeft shift
(
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
32)This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the left are discarded. Zero bits are shifted in from the right.
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
33 yields 36, because 1001 shifted 2 bits to the left becomes 100100, which is 36.Sign-propagating right shift (
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
34)This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are discarded. Copies of the leftmost bit are shifted in from the left.
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
35 yields 2, because 1001 shifted 2 bits to the right becomes 10, which is 2. Likewise,
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
36 yields -3, because the sign is preserved.Zero-fill right shift (
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
37)This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are discarded. Zero bits are shifted in from the left.
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
38 yields 4, because 10011 shifted 2 bits to the right becomes 100, which is 4. For non-negative numbers, zero-fill right shift and sign-propagating right shift yield the same result.

Logical operators are typically used with Boolean (logical) values; when they are, they return a Boolean value. However, the

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
39 and
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
40 operators actually return the value of one of the specified operands, so if these operators are used with non-Boolean values, they may return a non-Boolean value. The logical operators are described in the following table.

Logical operatorsOperatorUsageDescriptionLogical AND (
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
39)
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
42Returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
43 if it can be converted to
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
44; otherwise, returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
45. Thus, when used with Boolean values,
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
39 returns
operator operand
operand operator
30 if both operands are true; otherwise, returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
44.Logical OR (
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
40)
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
50Returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
43 if it can be converted to
operator operand
operand operator
30; otherwise, returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
45. Thus, when used with Boolean values,
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
40 returns
operator operand
operand operator
30 if either operand is true; if both are false, returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
44.Logical NOT (
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
4)
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
58Returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
44 if its single operand that can be converted to
operator operand
operand operator
30; otherwise, returns
operator operand
operand operator
30.

Examples of expressions that can be converted to

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
44 are those that evaluate to null, 0, NaN, the empty string (""), or undefined.

The following code shows examples of the

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
39 (logical AND) operator.

operand1 operator operand2
4

The following code shows examples of the || (logical OR) operator.

operand1 operator operand2
5

The following code shows examples of the ! (logical NOT) operator.

operand1 operator operand2
6

As logical expressions are evaluated left to right, they are tested for possible "short-circuit" evaluation using the following rules:

  • const obj = {};
    
    obj.x = 3;
    console.log(obj.x); // Prints 3.
    console.log(obj); // Prints { x: 3 }.
    
    const key = "y";
    obj[key] = 5;
    console.log(obj[key]); // Prints 5.
    console.log(obj); // Prints { x: 3, y: 5 }.
    
    64 is short-circuit evaluated to false.
  • const obj = {};
    
    obj.x = 3;
    console.log(obj.x); // Prints 3.
    console.log(obj); // Prints { x: 3 }.
    
    const key = "y";
    obj[key] = 5;
    console.log(obj[key]); // Prints 5.
    console.log(obj); // Prints { x: 3, y: 5 }.
    
    65 is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that the anything part of the above expressions is not evaluated, so any side effects of doing so do not take effect.

Note that for the second case, in modern code you can use the Nullish coalescing operator (

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
66) that works like
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
40, but it only returns the second expression, when the first one is "nullish", i.e.
operand1 operator operand2
12 or
operand1 operator operand2
13. It is thus the better alternative to provide defaults, when values like
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
70 or
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
71 are valid values for the first expression, too.

Most operators that can be used between numbers can be used between

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
28 values as well.

operand1 operator operand2
7

One exception is unsigned right shift (

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
37), which is not defined for BigInt values. This is because a BigInt does not have a fixed width, so technically it does not have a "highest bit".

operand1 operator operand2
8

BigInts and numbers are not mutually replaceable — you cannot mix them in calculations.

operand1 operator operand2
9

This is because BigInt is neither a subset nor a superset of numbers. BigInts have higher precision than numbers when representing large integers, but cannot represent decimals, so implicit conversion on either side might lose precision. Use explicit conversion to signal whether you wish the operation to be a number operation or a BigInt one.

operator operand
operand operator
0

You can compare BigInts with numbers.

operator operand
operand operator
1

In addition to the comparison operators, which can be used on string values, the concatenation operator (+) concatenates two string values together, returning another string that is the union of the two operand strings.

For example,

operator operand
operand operator
2

The shorthand assignment operator

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
74 can also be used to concatenate strings.

For example,

operator operand
operand operator
3

The conditional operator is the only JavaScript operator that takes three operands. The operator can have one of two values based on a condition. The syntax is:

operator operand
operand operator
4

If

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
75 is true, the operator has the value of
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
76. Otherwise it has the value of
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
77. You can use the conditional operator anywhere you would use a standard operator.

For example,

operator operand
operand operator
5

This statement assigns the value "adult" to the variable

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
78 if
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
79 is eighteen or more. Otherwise, it assigns the value "minor" to
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
78.

The comma operator (

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
81) evaluates both of its operands and returns the value of the last operand. This operator is primarily used inside a
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
82 loop, to allow multiple variables to be updated each time through the loop. It is regarded bad style to use it elsewhere, when it is not necessary. Often two separate statements can and should be used instead.

For example, if

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
02 is a 2-dimensional array with 10 elements on a side, the following code uses the comma operator to update two variables at once. The code prints the values of the diagonal elements in the array:

operator operand
operand operator
6

A unary operation is an operation with only one operand.

The

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
84 operator deletes an object's property. The syntax is:

operator operand
operand operator
7

where

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
85 is the name of an object,
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
86 is an existing property, and
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
87 is a string or symbol referring to an existing property.

If the

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
84 operator succeeds, it removes the property from the object. Trying to access it afterwards will yield
operand1 operator operand2
13. The
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
84 operator returns
operator operand
operand operator
30 if the operation is possible; it returns
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
44 if the operation is not possible.

operator operand
operand operator
8

Deleting array elements

Since arrays are just objects, it's technically possible to

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
84 elements from them. This is however regarded as a bad practice, try to avoid it. When you delete an array property, the array length is not affected and other elements are not re-indexed. To achieve that behavior, it is much better to just overwrite the element with the value
operand1 operator operand2
13. To actually manipulate the array, use the various array methods such as
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
95.

The

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator is used in either of the following ways:

operator operand
operand operator
9

The

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns a string indicating the type of the unevaluated operand.
const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
98 is the string, variable, keyword, or object for which the type is to be returned. The parentheses are optional.

Suppose you define the following variables:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
0

The

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns the following results for these variables:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
1

For the keywords

operator operand
operand operator
30 and
operand1 operator operand2
12, the
let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns the following results:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
2

For a number or string, the

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns the following results:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
3

For property values, the

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns the type of value the property contains:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
4

For methods and functions, the

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns results as follows:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
5

For predefined objects, the

let x;
const y = (x = f()); // Or equivalently: const y = x = f();
console.log(y); // Logs the return value of the assignment x = f().

console.log(x = f()); // Logs the return value directly.

// An assignment expression can be nested in any place
// where expressions are generally allowed,
// such as array literals' elements or as function calls' arguments.
console.log([ 0, x = f(), 0 ]);
console.log(f(0, x = f(), 0));
5 operator returns results as follows:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
6

The

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
07 operator is used in either of the following ways:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
7

The

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
07 operator specifies an expression to be evaluated without returning a value.
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
09 is a JavaScript expression to evaluate. The parentheses surrounding the expression are optional, but it is good style to use them.

A relational operator compares its operands and returns a Boolean value based on whether the comparison is true.

The

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
10 operator returns
operator operand
operand operator
30 if the specified property is in the specified object. The syntax is:

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
8

where

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
12 is a string, numeric, or symbol expression representing a property name or array index, and
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
13 is the name of an object.

The following examples show some uses of the

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
10 operator.

const obj = {};

obj.x = 3;
console.log(obj.x); // Prints 3.
console.log(obj); // Prints { x: 3 }.

const key = "y";
obj[key] = 5;
console.log(obj[key]); // Prints 5.
console.log(obj); // Prints { x: 3, y: 5 }.
9

The

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
15 operator returns
operator operand
operand operator
30 if the specified object is of the specified object type. The syntax is:

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
0

where

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
13 is the name of the object to compare to
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
18, and
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
18 is an object type, such as
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
20 or
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
21.

Use

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
15 when you need to confirm the type of an object at runtime. For example, when catching exceptions, you can branch to different exception-handling code depending on the type of exception thrown.

For example, the following code uses

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
15 to determine whether
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
24 is a
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
20 object. Because
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
24 is a
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
20 object, the statements in the
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
28 statement execute.

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
1

All operators eventually operate on one or more basic expressions. These basic expressions include and , but there are a few other kinds as well. They are briefly introduced below, and their semantics are described in detail in their respective reference sections.

Use the

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
29 keyword to refer to the current object. In general,
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
29 refers to the calling object in a method. Use
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
29 either with the dot or the bracket notation:

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
2

Suppose a function called

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
32 validates an object's
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
33 property, given the object and the high and low values:

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
3

You could call

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
32 in each form element's
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
35 event handler, using
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
29 to pass it to the form element, as in the following example:

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
4

The grouping operator

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
37 controls the precedence of evaluation in expressions. For example, you can override multiplication and division first, then addition and subtraction to evaluate addition first.

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
5

You can use the

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
38 operator to create an instance of a user-defined object type or of one of the built-in object types. Use
const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
38 as follows:

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
6

The

const val = 0;
val.x = 3;

console.log(val.x); // Prints undefined.
console.log(val); // Prints 0.
40 keyword is used to call functions on an object's parent. It is useful with classes to call the parent constructor, for example.