Which of the following types of cells play a role in the pathophysiology of asthma

  • Athari, S. S. et al. Critical role of Toll-like receptors in pathophysiology of allergic asthma. Eur. J. Pharmacol. 808, 21–27 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Athari, S. S. Immune response shifting of asthma in aging. Middle-East J. Sci. Res. 13, 489–498 [2013].

    CAS  Google Scholar 

  • Soriano, J. B. et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 5, 691–706 [2017].

    Article  Google Scholar 

  • Boyman, O. et al. EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders. Allergy 70, 727–754 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Brightling, C., Bradding, P., Pavord, I. & Wardlaw, A. New insights into the role of the mast cell in asthma. Clin. Exp. Allergy 33, 550–556 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Taghavi, M. et al. Role of pathogen-associated molecular patterns [PAMPS] in immune responses to fungal infections. Eur. J. Pharmacol. 808, 8–13 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Foster, P. S. et al. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Rev. 278, 20–40 [2017].

    Article  CAS  Google Scholar 

  • Athari, S. S. & Athari, S. M. The importance of eosinophil, platelet and dendritic cell in asthma. Asian Pac. J. Trop. Dis. 4, S41–S47 [2014].

    Article  CAS  Google Scholar 

  • Galeone, C. et al. Precision Medicine in Targeted Therapies for Severe Asthma: Is There Any Place for “Omics” Technology? BioMed research international. 2018, 1–15 [2018].

  • Swedin, L. et al. Patient stratification and the unmet need in asthma. Pharmacol. Ther. 169, 13–34 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Stokes, J. R. & Casale, T. B. Characterization of asthma endotypes: implications for therapy. Ann. Allergy, Asthma Immunol. 117, 121–125 [2016].

    Article  CAS  Google Scholar 

  • Chung, K. F. Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies. J. Intern. Med. 279, 192–204 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Lea, S. et al. The effect of peroxisome proliferator-activated receptor-γ ligands on in vitro and in vivo models of COPD. Eur. Respiratory J. 43, 409–420 [2014].

    Article  CAS  Google Scholar 

  • O'Byrne, P. M. et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respiratory Med. 4, 797–806 [2016].

    Article  CAS  Google Scholar 

  • Svenningsen, S. & Nair, P. Asthma endotypes and an overview of targeted therapy for asthma. Front. Med. 4, 158 [2017].

    Article  Google Scholar 

  • Nair, P. et al. Safety and efficacy of a CXCR 2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo‐controlled clinical trial. Clin. Exp. Allergy 42, 1097–1103 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, Y.-Y. et al. JAK-1 rs2780895 C-related genotype and allele but not JAK-1 rs10789166, rs4916008, rs2780885, rs17127114, and rs3806277 are associated with higher susceptibility to asthma. Genet. Test. Mol. Biomark. 15, 841–847 [2011].

    Article  CAS  Google Scholar 

  • Howell, M. D., Fitzsimons, C. & Smith, P. A. JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease. Ann Allerg Asthma Immunol. 120, 367–375 [2018].

    Article  CAS  Google Scholar 

  • Wurster, A. L., Tanaka, T. & Grusby, M. J. The biology of Stat4 and Stat6. Oncogene 19, 2577 [2000].

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, A.-K., Walter, T. & Erkel, G. The fungal metabolite cyclonerodiol inhibits IL-4/IL-13 induced Stat6-signaling through blocking the association of Stat6 with p38, ERK1/2 and p300. Int. Immunopharmacol. 65, 392–401 [2018].

    Article  CAS  PubMed  Google Scholar 

  • McCormick, S. M. & Heller, N. M. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 75, 38–50 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walford, H. H. & Doherty, T. A. STAT6 and lung inflammation. Jak.Stat. 2, e25301 [2013].

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambrecht, B. N. & Hammad, H. The immunology of asthma. Nat. Immunol. 16, 45 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Makinde, T., Murphy, R. F. & Agrawal, D. K. The regulatory role of TGF‐β in airway remodeling in asthma. Immunol. cell Biol. 85, 348–356 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Wen, F.-Q. et al. Interleukin-4–and interleukin-13–enhanced transforming growth factor-β 2 production in cultured human bronchial epithelial cells is attenuated by interferon-γ. Am. J. Respir. Cell Mol. Biol. 26, 484–490 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, S. Regulation of STAT signaling by acetylation. Cell. Signal. 25, 1924–1931 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler, C., Levy, D. E. & Decker, T. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282, 20059–20063 [2007].

    Article  CAS  PubMed  Google Scholar 

  • So, E.-Y. et al. Ras/Erk pathway positively regulates Jak1/STAT6 activity and IL-4 gene expression in Jurkat T cells. Mol. Immunol. 44, 3416–3426 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Malabarba, M. G., Nagy, Z. S. & Kirken, R. A. Interleukin 4 regulates phosphorylation of serine 756 in the transactivation domain of Stat6 roles for multiple phosphorylation sites and Stat6 function. J. Biol. Chem. 279, 25196–25203 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Yeganeh, B. et al. Emerging mediators of airway smooth muscle dysfunction in asthma. Pulm. Pharmacol. Ther. 26, 105–111 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Ip, W., Wong, C. & Lam, C. Interleukin [IL]‐4 and IL‐13 up‐regulate monocyte chemoattractant protein‐1 expression in human bronchial epithelial cells: involvement of p38 mitogen‐activated protein kinase, extracellular signal‐regulated kinase 1/2 and Janus kinase‐2 but not c‐Jun NH2‐terminal kinase 1/2 signalling pathways. Clin. Exp. Immunol. 145, 162–172 [2006].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope, S. M. et al. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J. Immunol. 175, 5341–5350 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Morlacchi, P., Mandal, P. K. & McMurray, J. S. Synthesis and in vitro evaluation of a peptidomimetic inhibitor targeting the Src homology 2 [SH2] domain of STAT6. ACS medicinal Chem. Lett. 5, 69–72 [2013].

    Article  CAS  Google Scholar 

  • Mandal, P. K. et al. Targeting the Src homology 2 [SH2] domain of signal transducer and activator of transcription 6 [STAT6] with cell-permeable, phosphatase-stable phosphopeptide mimics potently inhibits Tyr641 phosphorylation and transcriptional activity. J. Med. Chem. 58, 8970–8984 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miklossy, G., Hilliard, T. S. & Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugogo, N. L., Bappanad, D. & Kraft, M. Obesity, metabolic dysregulation and oxidative stress in asthma. Biochim. Biophys. Acta 1810, 1120–1126 [2011].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • André, D. M. et al. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice. Int. Immunopharmacol. 38, 298–305 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Shore, S. A. et al. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 118, 389–395 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. et al. Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease. J. Immunol. 182, 684–691 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. S. et al. Role of the adiponectin binding protein, T-cadherin [Cdh23], in allergic airways responses in mice. PloS ONE 7, e41088 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Gilmore, T. D. Introduction to NF-κB: players, pathways, perspectives. Oncogene 25, 6680 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Mishra, V., Banga, J. & Silveyra, P. Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol. Ther. 181, 169–182 [2018].

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L. et al. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int. Immunopharmacol. 67, 396–407 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Catz, S. D. & Johnson, J. L. Transcriptional regulation of bcl-2 by nuclear factor κB and its significance in prostate cancer. Oncogene 20, 7342 [2001].

    Article  CAS  PubMed  Google Scholar 

  • Viatour, P. et al. NF-κB2/p100 induces Bcl-2 expression. Leukemia 17, 1349 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Akita, K., Kawata, S. & Shimotohno, K. p21WAF1 modulates NF-κB signaling and induces anti-apoptotic protein Bcl-2 in Tax-expressing rat fibroblast. Virology 332, 249–257 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Ajuwon, K. M. & Spurlock, M. E. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. Am. J. Physiol.Regul. Integr. Comp. Physiol. 288, R1220–R1225 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Ouchi, N. et al. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 14, 561–566 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Lovren, F. et al. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am. J. Physiol. Heart Circ. Physiol. 299, H656–H663 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki, T. et al. Adiponectin protects LPS‐induced liver injury through modulation of TNF‐α in KK‐Ay obese mice. Hepatology 40, 177–184 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Ouchi, N. et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102, 1296–1301 [2000].

    Article  CAS  PubMed  Google Scholar 

  • Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 [2014]. e1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingo, C. et al. The prostaglandin D 2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir. Res. 19, 189 [2018].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda, K. et al. Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J. Allergy Clin. Immunol. 116, 1357–1363 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Townley, R. G. & Agrawal, S. CRTH2 antagonists in the treatment of allergic responses involving TH2 cells, basophils, and eosinophils. Ann. Allerg. Asthma Immunol. 109, 365–374 [2012].

    Article  CAS  Google Scholar 

  • Nagata, K. et al. CRTH2, an orphan receptor of T‐helper‐2‐cells, is expressed on basophils and eosinophils and responds to mast cell‐derived factor [s]. FEBS Lett. 459, 195–199 [1999].

    Article  CAS  PubMed  Google Scholar 

  • Pettipher, R. The roles of the prostaglandin D2 receptors DP1 and CRTH2 in promoting allergic responses. Br. J. Pharmacol. 153, S191–S199 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Coleman, R. & Sheldrick, R. Prostanoid‐induced contraction of human bronchial smooth muscle is mediated by TP‐receptors. Br. J. Pharmacol. 96, 688–692 [1989].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupczyk, M. & Kuna, P. Targeting the PGD 2/CRTH2/DP1 signaling pathway in asthma and allergic disease: current status and future perspectives. Drugs 77, 1281–1294 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes, D. A. et al. Fevipiprant [QAW039], a slowly dissociating CRTh2 antagonist with the potential for improved clinical efficacy. Mol. Pharmacol. 89, 593–605 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Xue, L. et al. in C35. ASTHMA AND ALLERGY CELLULAR INVESTIGATIONS A5301-A5301 [American Thoracic Society, 2017].

  • Gazi, L. et al. Δ12-Prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes. Prostaglandins Other Lipid Mediat. 75, 153–167 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Sawyer, N. et al. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. Br. J. Pharmacol. 137, 1163–1172 [2002].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandham, D. A. et al. Discovery of fevipiprant [NVP-QAW039], a potent and selective DP2 receptor antagonist for treatment of asthma. ACS Med. Chem. Lett. 8, 582–586 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, L. et al. Leukotriene E4 activates human Th2 cells for exaggerated proinflammatory cytokine production in response to prostaglandin D2. J. Immunol. 188, 694–702 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Gervais, F. G. et al. Selective modulation of chemokinesis, degranulation, and apoptosis in eosinophils through the PGD2 receptors CRTH2 and DP. J. Allergy Clin. Immunol. 108, 982–988 [2001].

    Article  CAS  PubMed  Google Scholar 

  • Xue, L. et al. Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J. Immunol. 175, 6531–6536 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Patel, K. D. Eosinophil tethering to interleukin-4–activated endothelial cells requires both P-selectin and vascular cell adhesion molecule-1. Blood 92, 3904–3911 [1998].

    Article  CAS  PubMed  Google Scholar 

  • Moore, P. E. et al. IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK. Am. J. Physiol.Lung Cell. Mol. Physiol. 282, L847–L853 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Farne, H., Jackson, D. J. & Johnston, S. L. Are emerging PGD2 antagonists a promising therapy class for treating asthma? Expert Opin. Emerg. Drugs 21, 359–364 [2016].

  • Aceves, S. S. & Ackerman, S. J. Relationships between eosinophilic inflammation, tissue remodeling, and fibrosis in eosinophilic esophagitis. Immunol. allergy Clin. North Am. 29, 197–211 [2009].

    Article  PubMed  PubMed Central  Google Scholar 

  • Molfino, N. et al. Molecular and clinical rationale for therapeutic targeting of interleukin‐5 and its receptor. Clin. Exp. Allergy 42, 712–737 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Wood, B. L. et al. The effects of caregiver depression on childhood asthma: pathways and mechanisms. Ann. Allergy, Asthma Immunol. 121, 421–427 [2018].

    Article  Google Scholar 

  • Zaitsu, M. et al. Direct evidence that LTC4 and LTB4 but not TXA2 are involved in asthma attacks in children. J. Asthma 35, 445–448 [1998].

    Article  CAS  PubMed  Google Scholar 

  • Gelfand, E. W. Importance of the leukotriene B4-BLT1 and LTB4-BLT2 pathways in asthma. Semin. Immunol 33, 44–51 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson, A., Castling, D., Green, C. & Price, J. Persistent increase in plasma and urinary leukotrienes after acute asthma. Arch. Dis. Child. 73, 221–225 [1995].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montuschi, P. & Barnes, P. J. Exhaled leukotrienes and prostaglandins in asthma. J. Allergy Clin. Immunol. 109, 615–620 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Sheller, J. R. et al. Nuclear factor kappa B induction in airway epithelium increases lung inflammation in allergen-challenged mice. Exp. Lung Res. 35, 883–895 [2009].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuliga, M. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5, 1266–1283 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, G. G. et al. Increased inducible nitric oxide synthase in lung carcinoma of smokers. Cancer. 112, 372–381 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Anto, R. J. et al. Cigarette smoke condensate activates nuclear transcription factor-κB through phosphorylation and degradation of IκBα: correlation with induction of cyclooxygenase-2. Carcinogenesis 23, 1511–1518 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.-B. et al. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-κB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30, 2345–2351 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Shin, N.-R. et al. Galgeun-tang attenuates cigarette smoke and lipopolysaccharide induced pulmonary inflammation via IκBα/NF-κB signaling. Molecules 23, 2489 [2018].

    Article  CAS  PubMed Central  Google Scholar 

  • Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nat. Med. 12, 1023 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Edwards, M. et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 6, 797 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. et al. Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. J. Allergy Clin. Immunol. 143, 114–125 [2019]. e114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, R. & Chopra, V. Effect of the Wingless [wg1] mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol. 48, 461–465 [1976].

    Article  CAS  PubMed  Google Scholar 

  • Yurt, M. et al. Vitamin D supplementation blocks pulmonary structural and functional changes in a rat model of perinatal vitamin D deficiency. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L859–L867 [2014].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baarsma, H. A., Königshoff, M. & Gosens, R. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol. Ther. 138, 66–83 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Hussain, M. et al. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim. Biophys. Acta 1863, 3226–3242 [2017].

    Article  CAS  Google Scholar 

  • Huo, Y. et al. Tiotropium inhibits methacholine-induced extracellular matrix production via β-catenin signaling in human airway smooth muscle cells. Int. J. Chronic Obstr. Pulm. Dis. 13, 1469 [2018].

    Article  CAS  Google Scholar 

  • Jia, X. X., Zheng, Y. R. & Huang, Y. Effects of Wnt/β-catenin signal pathway on asthma airway remodeling. Chinese. J. Pathophysiol. 33, 1683–1689 [2017].

    Google Scholar 

  • Royer, J. et al. A novel antagonist of prostaglandin D2 blocks the locomotion of eosinophils and basophils. Eur. J. Clin. Investig. 38, 663–671 [2008].

    Article  CAS  Google Scholar 

  • Vatrella, A. et al. Dupilumab: a novel treatment for asthma. J. Asthma Allerg. 7, 123 [2014].

    Article  CAS  Google Scholar 

  • Kuna, P., Bjermer, L. & Tornling, G. Two phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des. Dev. Ther. 10, 2759 [2016].

    Article  CAS  Google Scholar 

  • Tromp, I. I. et al. 25-Hydroxyvitamin D concentrations, asthma and eczema in childhood: the generation R study. Clin. Nutr. 37, 169–176 [2018].

    Article  CAS  PubMed  Google Scholar 

  • Brehm, J. M. et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J. Allergy Clin. Immunol. 126, 52–58 [2010]. e55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sypniewska, G. et al. 25-Hydroxyvitamin D, biomarkers of eosinophilic inflammation, and airway remodeling in children with newly diagnosed untreated asthma. Allergy Asthma Proceedings 38, 29–36 [2017].

  • Pálmer, H. G. et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154, 369–388 [2001].

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilera, O. et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1α, 25-dihydroxyvitamin D 3 associated to the differentiation of human colon cancer cells. Carcinogenesis 28, 1877–1884 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y. et al. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/β-catenin signaling pathway. Int. Immunopharmacol. 68, 88–94 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Solberg, O. D. et al. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med. 186, 965–974 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pua, H. H. & Ansel, K. M. MicroRNA regulation of allergic inflammation and asthma. Curr. Opin. Immunol. 36, 101–108 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aich, J. et al. Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase [INPP4A]. Int. Immunopharmacol. 14, 438–443 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Xia, H., Li, Y. & Lv, X. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer. Int. J. Oncol. 49, 1325–1333 [2016].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y.-J. et al. Tumor hypoxia regulates forkhead box C1 to promote lung cancer progression. Theranostics 7, 1177 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Hu, J. & Liu, L. MiR-200a modulates TGF-β1-induced endothelial-to-mesenchymal shift via suppression of GRB2 in HAECs. Biomed. Pharmacother. 95, 215–222 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X. et al. FoxC1 promotes epithelial-mesenchymal transition through PBX1 dependent transactivation of ZEB2 in esophageal cancer. Am. J. Cancer Res. 7, 1642 [2017].

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Z. et al. miR‐639 regulates transforming growth factor beta‐induced epithelial–mesenchymal transition in human tongue cancer cells by targeting FOXC 1. Cancer Sci. 105, 1288–1298 [2014].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. MicroRNA-200a affects the proliferation of airway smooth muscle cells and airway remodeling by targeting FOXC1 via the PI3K/AKT signaling pathway in ovalbumin-induced asthmatic mice. Cell. Physiol. Biochem. 50, 2365–2389 [2018].

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. et al. FOXC1 promotes proliferation and epithelial-mesenchymal transition in cervical carcinoma through the PI3K-AKT signal pathway. Am. J. Transl. Res. 9, 1297 [2017].

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, X.-J. et al. The PTEN/PI3K/Akt signaling pathway mediates HMGB1-induced cell proliferation by regulating the NF-κB/cyclin D1 pathway in mouse mesangial cells. Am. J. Physiol. Cell Physiol. 306, C1119–C1128 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Li, C. et al. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons. Toxicol. Appl. Pharmacol. 229, 351–361 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Luo, D. & Liao, D. J. CyclinD1 protein plays different roles in modulating chemoresponses in MCF7 and MDA-MB231 cells. J. Carcinog. 11, 12 [2012].

  • Gao, N. et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol.Cell Physiol. 287, C281–C291 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Wu, H. et al. A negative feedback loop between miR‐200b and the nuclear factor‐κB pathway via IKBKB/IKK‐β in breast cancer cells. FEBS J. 283, 2259–2271 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Bera, A. et al. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation. Cell. Signal. 25, 2575–2586 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagani, T. et al. Fas [CD95] and FasL [CD95L] expression in airway epithelium of subjects with fatal and non-fatal asthma. Am. J. Respir. Crit. Care Med. 163, A739 [2001].

    Google Scholar 

  • Rahimi, R. A. & Leof, E. B. TGF‐β signaling: a tale of two responses. J. Cell. Biochem. 102, 593–608 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Pittet, J.-F. et al. TGF-β is a critical mediator of acute lung injury. J. Clin. Investig. 107, 1537–1544 [2001].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, M. et al. Corticosteroids prevent myofibroblast accumulation and airway remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L162–L169 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Cohn, L., Elias, J. A. & Chupp, G. L. Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789–815 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Kaur, M., Kaur, T., Kamboj, S. S. & Singh, J. Roles of galectin-7 in cancer. Asian Pac. J. Cancer Prev. 17, 455–461 [2016].

    Article  PubMed  Google Scholar 

  • Yin, G. et al. Galectin-7 is associated with bronchial epithelial cell apoptosis in asthmatic children. Zhonghua er ke za zhi Chin. J. Pediatrics 44, 523–526 [2006].

    Google Scholar 

  • Kuwabara, I. et al. Galectin-7 [PIG1] exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome cRelease. J. Biol. Chem. 277, 3487–3497 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Vizetto-Duarte, C. et al. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage. Phytomedicine 23, 550–557 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve, C. et al. Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells. Mol. Biol. Cell 22, 999–1013 [2011].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X. & Zhang, W. Silencing of Gal-7 inhibits TGF-β1-induced apoptosis of human airway epithelial cells through JNK signaling pathway. Exp. Cell Res. 375, 100–105 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Minemoto, Y. & Lin, A. c-Jun N-terminal protein kinase 1 [JNK1], but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol. Cell. Biol. 24, 10844–10856 [2004].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C. et al. Role of c-Jun N-terminal kinase signal transduction pathway in the course of airway remodeling of asthma rat. Zhonghua er ke za zhi Chin. J. Pediatrics. 46, 535–539 [2008].

    Google Scholar 

  • Han, T. et al. Enhanced expressions of Wnt5a/JNK signaling pathway-related molecules in the lung tissues of asthmatic rats. Xi bao yu fen. zi mian yi xue za zhi Chin. J. Cell. Mol. Immunol. 31, 325–327 [2015]. 332.

    CAS  Google Scholar 

  • De Wever, O. et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J. cell Sci. 117, 4691–4703 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Di Rosanna, P. & Salvatore, C. Reactive oxygen species, inflammation, and lung diseases. Curr. Pharm. Des. 18, 3889–3900 [2012].

    Article  PubMed  Google Scholar 

  • Park, S. J. et al. L-2-Oxothiazolidine-4-carboxylic acid or α-lipoic acid attenuates airway remodeling: involvement of nuclear factor-κB [NF-κB], nuclear factor erythroid 2p45-related factor-2 [Nrf2], and hypoxia-inducible factor [HIF]. Int. J. Mol. Sci. 13, 7915–7937 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, H. et al. Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci. 218, 25–30 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Huang, K. et al. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol. Cell. Endocrinol. 399, 178–189 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Lachapelle, P., Li, M., Douglass, J. & Stewart, A. Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol. Ther. 187, 98–113 [2018].

    Article  CAS  PubMed  Google Scholar 

  • Zissler, U. et al. Current and future biomarkers in allergic asthma. Allergy 71, 475–494 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Ding, F., Fu, Z. & Liu, B. Lipopolysaccharide exposure alleviates asthma in mice by regulating Th2/Th2 and Treg/Th27 balance. Med. Sci. Monit. 24, 3220 [2018].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, P. et al. Huai Qi Huang corrects the balance of Th2/Th2 and Treg/Th27 in an ovalbumin-induced asthma mouse model. Biosci. Rep. 37, BSR20171071 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na, H. et al. Concomitant suppression of TH2 and TH17 cell responses in allergic asthma by targeting retinoic acid receptor–related orphan receptor γt. J. Allergy Clin. Immunol. 141, 2061–2073 [2018].

  • Chen, T. et al. The imbalance of FOXP3/GATA3 in egulatory T cells from the peripheral blood of asthmatic patients. J. Immunol. Res. 2018, 1–10 [2018].

  • Zhu, Y. et al. Analysis of lncRNA expression in patients with eosinophilic and neutrophilic asthma focusing on LNC_000127. Front. Genet. 10, 141 [2019].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.-y et al. GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci. 212, 93–101 [2018].

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y.-J., Mao, D., Gao, W. & Hu, H. Peripheral whole blood lncRNA expression analysis in patients with eosinophilic asthma. Medicine 97, e9817 [2018].

  • Narożna, B., Langwiński, W. & Szczepankiewicz, A. Non-coding RNAs in pediatric airway diseases. Genes 8, 348 [2017].

    Article  CAS  PubMed Central  Google Scholar 

  • Qiu, Y.-y et al. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th27 balance in patients with asthma by targeting microRNA-17/RORγt. Biomed. Pharmacother. 111, 386–394 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Paplińska, M. et al. Expression of eotaxins in the material from nasal brushing in asthma, allergic rhinitis and COPD patients. Cytokine 60, 393–399 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Shieh, Y.-H. et al. Zerumbone enhances the Th2 response and ameliorates ovalbumin-induced Th2 responses and airway inflammation in mice. Int. Immunopharmacol. 24, 383–391 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Gui-min, G. The progress of eotaxin and the association with ashtma. Int J. Immunol. 2, 93–96 [2006].

  • Yuan, F. et al. JAX2, an ethanol extract of Hyssopus cuspidatus Boriss, can prevent bronchial asthma by inhibiting MAPK/NF-κB inflammatory signaling. Phytomedicine 57, 305–314 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Henderson, W. R. Jr et al. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am. J. Respir. Crit. Care Med. 165, 108–116 [2002].

    Article  PubMed  Google Scholar 

  • Dahlen, S.-E. Pharmacological characterization of leukotriene receptors. Am. J. Respir. Crit. Care Med. 161, S41–S45 [2000].

    Article  CAS  PubMed  Google Scholar 

  • Gauvreau, G. M., Parameswaran, K. N., Watson, R. M. & O'BYRNE, P. M. Inhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. Am. J. Respir. Crit. Care Med. 164, 1495–1500 [2001].

    Article  CAS  PubMed  Google Scholar 

  • Suh, D. H. et al. P2Y12 antagonist attenuates eosinophilic inflammation and airway hyperresponsiveness in a mouse model of asthma. J. Cell. Mol. Med. 20, 333–341 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Kanaoka, Y. & Boyce, J. A. Cysteinyl leukotrienes and their receptors; emerging concepts. Allerg. Asthma Immunol. Res. 6, 288–295 [2014].

    Article  CAS  Google Scholar 

  • Kanaoka, Y., Maekawa, A. & Austen, K. F. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J. Biol. Chem. 288, 10967–10972 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh, H. K. T. et al. Characterization of cysteinyl leukotriene-related receptors and their interactions in a mouse model of asthma. Prostaglandins, Leukotrienes Essent. Fat. Acids 141, 17–23 [2019].

    Article  CAS  Google Scholar 

  • Paruchuri, S. et al. Leukotriene E4–induced pulmonary inflammation is mediated by the P2Y12 receptor. J. Exp. Med. 206, 2543–2555 [2009].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raker, V. K., Becker, C. & Steinbrink, K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front. Immunol. 7, 123 [2016].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, F. et al. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral. Dis. 21, e25–e50 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Bateman, E. D., Goehring, U.-M., Richard, F. & Watz, H. Roflumilast combined with montelukast versus montelukast alone as add-on treatment in patients with moderate-to-severe asthma. J. Allergy Clin. Immunol. 138, 142–149 [2016].

  • Southworth, T. et al. Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine 113, 68–73 [2019].

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, P. G. et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl Acad. Sci. 104, 15858–15863 [2007].

    Article  PubMed  PubMed Central  Google Scholar 

  • Grundy, S. et al. Additive anti-inflammatory effects of corticosteroids and phosphodiesterase-4 inhibitors in COPD CD8 cells. Respiratory Res. 17, 9 [2016].

    Article  CAS  Google Scholar 

  • Goleva, E. et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am. J. Respi. Crit. Care Med. 188, 1193–1201 [2013].

    Article  CAS  Google Scholar 

  • Bjørgo, E. & Taskén, K. Novel mechanism of signaling by CD28. Immunol. Lett. 129, 1–6 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Barnes, P. J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 131, 636–645 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Matera, M. G., Page, C. & Rinaldi, B. β2-Adrenoceptor signalling bias in asthma and COPD and the potential impact on the comorbidities associated with these diseases. Curr. Opin. Pharmacol. 40, 142–146 [2018].

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. Molecular mechanisms of β2-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. 117, 18–24 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Krug, N. et al. Enhanced expression of fas ligand [CD95L] on T cells after segmental allergen provocation in asthma. J. Allergy Clin. Immunol. 103, 649–655 [1999].

    Article  CAS  PubMed  Google Scholar 

  • Müller, M. et al. Altered apoptosis in bronchoalveolar lavage lymphocytes after allergen exposure of atopic asthmatic subjects. Eur. Respir. J. 28, 513–522 [2006].

    Article  PubMed  Google Scholar 

  • Druilhe, A. et al. Apoptosis, proliferation, and expression of Bcl-2, Fas, and Fas ligand in bronchial biopsies from asthmatics. Am. J. Respir. C ell Mol. Biol. 19, 747–757 [1998].

    Article  CAS  Google Scholar 

  • Le Gallo, M., Poissonnier, A., Blanco, P. & Legembre, P. CD95/Fas, non-apoptotic signaling pathways, and kinases. Front. Immunol. 8, 1216 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter, M. E. et al. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 22, 549 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krammer, P. H., Arnold, R. & Lavrik, I. N. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-M., Schickel, R. & Peter, M. E. Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr. Opin. Cell Biol. 17, 610–616 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Desbarats, J. et al. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat. Cell Biol. 5, 118 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Neumann, L. et al. Dynamics within the CD95 death‐inducing signaling complex decide life and death of cells. Mol. Syst. Biol. 6 [2010].

  • Kleber, S. et al. Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13, 235–248 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, P., Ellert-Miklaszewska, A., Kwiatkowska, A. & Kaminska, B. Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFκB-TIMP-2 pathway. Cell Signal. 22, 212–220 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Fang, Y. et al. Comparison of sensitivity of Th2, Th2, and Th27 cells to Fas‐mediated apoptosis. J. Leukoc. Biol. 87, 1019–1028 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, J. W. et al. Non-apoptotic Fas [CD95] signaling on T cells regulates the resolution of Th2-mediated inflammation. Front. Immunol. 9, 2521 [2018].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. Protective effect of electro-acupuncture at maternal different points on perinatal nicotine exposure-induced pulmonary dysplasia in offspring based on HPA axis and signal transduction pathway. Biochem. B iophys. Res. Commun. 505, 586–592 [2018].

    Article  CAS  Google Scholar 

  • Rehan, V. K. & Torday, J. S. PPARγ signaling mediates the evolution, development, homeostasis, and repair of the lung. PPAR Res. 2012 [2012].

  • Rijken, D. & Sakharov, D. Basic principles in thrombolysis: regulatory role of plasminogen. Thrombosis Res. 103, S41–S49 [2001].

    Article  CAS  Google Scholar 

  • Cho, S. H., Ryu, C. H. & Oh, C. K. Plasminogen activator inhibitor-1 in the pathogenesis of asthma. Exp. Biol. Med. 229, 138–146 [2004].

    Article  CAS  Google Scholar 

  • Lee, S. H. et al. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma. Am. J. Respir. C ell Mol. Biol. 46, 842–846 [2012].

    Article  CAS  Google Scholar 

  • Miyamoto, S. et al. Intra-airway administration of small interfering RNA targeting plasminogen activator inhibitor-1 attenuates allergic asthma in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L908–L916 [2011].

    Article  CAS  PubMed  Google Scholar 

  • Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol. 9, 733 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Mukai, K., Obata, K., Tsujimura, Y. & Karasuyama, H. New insights into the roles for basophils in acute and chronic allergy. Allergol. Int. 58, 11–19 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Prussin, C. & Metcalfe, D. D. 4. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 111, S486–S494 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310 [2008].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. J. Exp. Med. 204, 93–103 [2007].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, M. et al. Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–1000 [2004].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, M., Rhee, I., Liu, Y. & Zhang, W. Negative regulation of FcϵRI-mediated signaling and mast cell function by the adaptor protein LAX. J. Biol. Chem. 281, 18408–18413 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Kinet, J.-P. The high-affinity IgE receptor [FcεRI]: from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 [1999].

    Article  CAS  PubMed  Google Scholar 

  • Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Li, P. et al. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y. et al. The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma. Biochem. Pharmacol. 100, 61–72 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Kitaura, J. et al. Regulation of highly cytokinergic IgE-induced mast cell adhesion by Src, Syk, Tec, and protein kinase C family kinases. J. Immunol. 174, 4495–4504 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Weinblatt, M. E. et al. An oral spleen tyrosine kinase [Syk] inhibitor for rheumatoid arthritis. New Engl. J. Med. 363, 1303–1312 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W. et al. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway. Exp. C ell Res. 376, 124–132 [2019].

    Article  CAS  Google Scholar 

  • Aggarwal, N. R., King, L. S. & D'Alessio, F. R. Diverse macrophage populations mediate acute lung inflammation and resolution. Am. J. Physiol.Lung Cell. Mol. Physiol. 306, L709–L725 [2014].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G. & Yang, H. Modulation of macrophage activation and programming in immunity. J. Cell. Physiol. 228, 502–512 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Tang, L. et al. M2A and M2C macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway. Shock 48, 119–129 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Han, G., Chen, G., Shen, B. & Li, Y. Tim-3: an activation marker and activation limiter of innate immune cells. Front. Immunol. 4, 449 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatos, C. A. et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol. 4, 1102 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. et al. Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways. Mol. Cell. Biol. 31, 3963–3974 [2011].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, A. C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 1141–1143 [2007].

    Article  CAS  PubMed  Google Scholar 

  • Guha, M. & Mackman, N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124–32132 [2002].

    Article  CAS  PubMed  Google Scholar 

  • Ma, C. J. et al. Cis association of galectin-9 with Tim-3 differentially regulates IL-12/IL-23 expressions in monocytes via TLR signaling. PloS ONE 8, e72488 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makita, N. et al. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int. Immunol. 27, 131–141 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Eosinophils reduce chronic inflammation in adipose tissue by secreting Th2 cytokines and promoting M2 macrophages polarization. Int. J. Endocrin. 2015, 1–5 [2015].

  • Lopez-Santalla, M. et al. AB0176 P38 MAPK phosphorylation as a rheumatoid arthritis biomarker. Ann. Rheum. Dis. 71, 647–647 [2013].

    Article  Google Scholar 

  • Karin, M. & Delhase, M. The I kappa B kinase [IKK] and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 12, 85–98 [2000].

  • O'Sullivan, A. W., Wang, J. H. & Redmond, H. P. NF-κB and P38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. J. Surg. Res. 152, 46–53 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Liu, L. et al. Eosinophils attenuate arthritis by inducing M2 macrophage polarization via inhibiting the IκB/P38 MAPK signaling pathway. Biochem. B iophys. Res. Commun. 508, 894–901 [2019].

    Article  CAS  Google Scholar 

  • Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 [2011].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, C. et al. Frontline science: coincidental null mutation of Csf2rα in a colony of PI3Kγ−/− mice causes alveolar macrophage deficiency and fatal respiratory viral infection. J. Leukoc. Biol. 101, 367–376 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Nobs, S. P., Kayhan, M. & Kopf, M. GM-CSF intrinsically controls eosinophil accumulation in the setting of allergic airway inflammation. J. Allergy Clin. Immunol. 143, 1513–1524 [2019].

  • Schneider, C. et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 10, e1004053 [2014].

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopf, M. et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4, 15–24 [1996].

    Article  CAS  PubMed  Google Scholar 

  • Gaurav, R. & Agrawal, D. K. Clinical view on the importance of dendritic cells in asthma. Expert Rev. Clin. Immunol. 9, 899–919 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, K. & Kolls, J. K. T Cell–mediated host immune defenses in the lung. Annu. Rev. Immunol. 31, 605–633 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782 [2000].

    Article  CAS  PubMed  Google Scholar 

  • Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675 [2001].

    Article  CAS  PubMed  Google Scholar 

  • Eder, W. et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J. allergy Clin. Immunol. 113, 482–488 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Casanova, J.-L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 [2011].

    Article  CAS  PubMed  Google Scholar 

  • Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Peng, J. et al. SARM inhibits both TRIF‐and MyD88‐mediated AP‐1 activation. Eur. J. Immunol. 40, 1738–1747 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol. 7, 148 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Han, C. et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat. Immunol. 11, 734 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Palsson-McDermott, E. M. et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88–independent TLR4 pathway. Nat. Immunol. 10, 579 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Zakeri, A. & Yazdi, F. G. Toll-like receptor-mediated involvement of innate immune cells in asthma disease. Biochim. Biophys. Acta Gen. Subj. 1861, 3270–3277 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Matesic, D., Lenert, A. & Lenert, P. Modulating toll-like receptor 7 and 9 responses as therapy for allergy and autoimmunity. Curr. Allergy Asthma Rep. 12, 8–17 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz, R. J., Rajagopal, K. & Whalen, E. J. New roles for β-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol. Cell 24, 643–652 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz, R. J. & Whalen, E. J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 [2004].

    Article  CAS  PubMed  Google Scholar 

  • Walker, J. K. & DeFea, K. A. Role for β-arrestin in mediating paradoxical β2AR and PAR2 signaling in asthma. Curr. Opin. Pharmacol. 16, 142–147 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Shenoy, S. K. & Lefkowitz, R. J. Seven-transmembrane receptor signaling through β-arrestin. Sci. Signal. 2005, cm10 [2005].

  • Nichols, H. L. et al. β-Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proc. Natl Acad. Sci. 109, 16660–16665 [2012].

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, J. K. et al. β-Arrestin-2 regulates the development of allergic asthma. J. Clin. Investig. 112, 566–574 [2003].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth, J. W. et al. Both hematopoietic-derived and non–hematopoietic-derived β-arrestin–2 regulates murine allergic airway disease. Am. J. Respir. Cell Mol. Biol. 43, 269–275 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Shenoy, S. K. et al. β-Arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Billington, C. K. & Penn, R. B. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir. Res. 4, 4 [2003].

    Article  Google Scholar 

  • Kaulmann, A. & Bohn, T. Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 34, 907–929 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Chen, X.-L. et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circul. Physiol. 290, H1862–H1870 [2006].

    Article  CAS  Google Scholar 

  • Kaplan, M. H. STAT signaling in inflammation. JAKSTAT. 2, e24198 [2013].

  • Braun, S. et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol. Cell Biol. 22, 5492–5505 [2002].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H. et al. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 73, 3097–3108 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Plafker, K. S. et al. The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2. J. Biol. Chem. 285, 23064–23074 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. J. et al. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic. Biol. Med. 70, 68–77 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Canning, P., Sorrell, F. J. & Bullock, A. N. Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 88, 101–107 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.-H., Yu, S., Chen, J. D. & Kong, A.-N. The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains. Oncogene 32, 514 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Nioi, P., Nguyen, T., Sherratt, P. J. & Pickett, C. B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell. Biol. 25, 10895–10906 [2005].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Yu, S.-W. & Kong, A.-N. T. Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J. Biol. Chem. 281, 27251–27263 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Tong, K. I. et al. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27, 7511–7521 [2007].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinan, S. B. et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24, 8477–8486 [2004].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes, J. D., McMahon, M., Chowdhry, S. & Dinkova-Kostova, A. T. Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxid. Redox Signal. 13, 1713–1748 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, S. M. U. et al. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta 1863, 585–597 [2017].

    Article  CAS  Google Scholar 

  • Rada, P. et al. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell Biol. 31, 1121–1133 [2011].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhry, S. et al. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32, 3765 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Prestera, T. et al. Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements [ARE]. Mol. Med. 1, 827–837 [1995].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunder, C. & Potter, R. F. The heme oxygenase system: its role in liver inflammation. Curr. Drug Targets Cardiovasc. Hematol. Disord. 3, 199–208 [2003].

    Article  CAS  Google Scholar 

  • Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Koziol-White, C. J. & Panettieri, R. A. Modulation of bronchomotor tone pathways in airway smooth muscle function and bronchomotor tone in asthma. Clin. Chest Med. 40, 51–57 [2019].

    Article  PubMed  Google Scholar 

  • Jude, J. A., Wylam, M. E., Walseth, T. F. & Kannan, M. S. Calcium signaling in airway smooth muscle. Proc. Am. Thorac. Soc. 5, 15–22 [2008].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, E. J. et al. Gα12 facilitates shortening in human airway smooth muscle by modulating phosphoinositide 3‐kinase‐mediated activation in a RhoA‐dependent manner. Br. J. Pharmacol. 174, 4383–4395 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tliba, O. et al. IL‐13 enhances agonist‐evoked calcium signals and contractile responses in airway smooth muscle. Br. J. Pharmacol. 140, 1159–1162 [2003].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba, Y. et al. Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am. J. Respir. Cell Mol. Biol. 40, 159–167 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Young, H. W. et al. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5′ elements. Am. J. respiratory cell Mol. Biol. 37, 273–290 [2007].

    Article  CAS  Google Scholar 

  • Hoshino, M. et al. Increased expression of the human Ca2+-activated Cl− channel 1 [CaCC1] gene in the asthmatic airway. Am. J. Respir. Crit. Care Med. 165, 1132–1136 [2002].

    Article  PubMed  Google Scholar 

  • Alevy, Y. G. et al. IL-13–induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Investig. 122, 4555–4568 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, K.-S. et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J. Clin. Investig. 117, 978–988 [2007].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, X. et al. FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol. Cell Biol. 33, 371–386 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korfhagen, T. R. et al. SAM-pointed domain ETS factor mediates epithelial cell–intrinsic innate immune signaling during airway mucous metaplasia. Proc. Natl Acad. Sci. 109, 16630–16635 [2012].

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Cras, T. D. et al. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am. J. Physiol.Lung Cell. Mol. Physiol. 300, L414–L421 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, M. X. & Nadel, J. A. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl Acad. Sci. 102, 767–772 [2005].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrais, M. et al. Induction of MUC2 and MUC5AC mucin by factors of the epidermal growth factor family is mediated by EGF-R/Ras/Raf/MAPK signaling cascade and Sp1. J. Biol. Chem. 277, 32258–32267[2002].

  • Erle, D. J. & Sheppard, D. The cell biology of asthma. J. Cell Biol. 205, 621–631 [2014].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. et al. Jagged1 is the major regulator of Notch‐dependent cell fate in proximal airways. Dev. Dyn. 242, 678–686 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Ou-Yang, H.-F., Wu, C.-G., Qu, S.-Y. & Li, Z.-K. Notch signaling downregulates MUC5AC expression in airway epithelial cells through Hes1-dependent mechanisms. Respiration 86, 341–346 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Nutku, E., Aizawa, H., Hudson, S. A. & Bochner, B. S. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101, 5014–5020 [2003].

    Article  CAS  PubMed  Google Scholar 

  • Bochner, B. S. Siglec‐8 on human eosinophils and mast cells, and Siglec‐F on murine eosinophils, are functionally related inhibitory receptors. Clin. Exp. Allergy 39, 317–324 [2009].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munitz, A. et al. The inhibitory receptor IRp60 [CD300a] suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. Blood 107, 1996–2003 [2006].

    Article  CAS  PubMed  Google Scholar 

  • Abbas, M. et al. Hypereosinophilia in patients with multiple sclerosis treated with natalizumab. Neurology 77, 1561–1564 [2011].

    Article  CAS  PubMed  Google Scholar 

  • Neighbour, H. et al. Safety and efficacy of an oral CCR 3 antagonist in patients with asthma and eosinophilic bronchitis: a randomized, placebo‐controlled clinical trial. Clin. Exp. Allergy 44, 508–516 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Wechsler, M. E. et al. Novel targeted therapies for eosinophilic disorders. J. Allergy Clin. Immunol. 130, 563–571 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrand, F. et al. The eosinophil surface receptor epidermal growth factor–like module containing mucin-like hormone receptor 1 [EMR1]: a novel therapeutic target for eosinophilic disorders. J. Allergy Clin. Immunol. 133, 1439–1447 [2014]. e1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettipher, R. et al. Heightened response of eosinophilic asthmatic patients to the CRTH 2 antagonist OC 000459. Allergy 69, 1223–1232 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Krug, N. et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. New Engl. J. Med. 372, 1987–1995 [2015].

    Article  PubMed  Google Scholar 

  • Ding, C., Li, J. & Zhang, X. Bertilimumab [Cambridge Antibody Technology Group]. Curr. Opin. Investig. Drugs 5, 1213–1218 [2004].

    CAS  PubMed  Google Scholar 

  • Ricketts, H. C. & Cowan, D. C. Asthma, obesity and targeted interventions: an update. Curr. Opin. Allergy Clin. Immunol. 19, 68–74 [2019].

    Article  PubMed  Google Scholar 

  • Detoraki, A. et al. Omalizumab in patients with eosinophilic granulomatosis with polyangiitis: a 36-month follow-up study. J. Asthma 53, 201–206 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Pelaia, G. et al. Targeted therapy in severe asthma today: focus on immunoglobulin E. Drug Des. Dev. Ther. 11, 1979 [2017].

    Article  CAS  Google Scholar 

  • Borish, L. C. et al. Interleukin-4 receptor in moderate atopic asthma: a phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 160, 1816–1823 [1999].

    Article  CAS  PubMed  Google Scholar 

  • Hart, T. et al. Preclinical efficacy and safety of pascolizumab [SB 240683]: a humanized anti‐interleukin‐4 antibody with therapeutic potential in asthma. Clin. Exp. Immunol. 130, 93–100 [2002].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard, C. et al. Inhibition of human interleukin‐13‐induced respiratory and oesophageal inflammation by anti‐human‐interleukin‐13 antibody [CAT‐354]. Clin. Exp. Allergy 35, 1096–1103 [2005].

    Article  CAS  PubMed  Google Scholar 

  • Maselli, D. J., Keyt, H. & Rogers, L. Profile of lebrikizumab and its potential in the treatment of asthma. J. Asthma Allergy 8, 87 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busse, W. W. et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti–IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 188, 1294–1302 [2013].

    Article  CAS  PubMed  Google Scholar 

  • Gauvreau, G. M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. New Engl. J. Med. 370, 2102–2110 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Agache, I. O. Endotype driven treatment of asthma. Curr. Treat. Options Allergy 1, 198–212 [2014].

    Article  Google Scholar 

  • Canonica, G. W. et al. Therapeutic interventions in severe asthma. AWorld Allergy Organ. J. 9, 40 [2016].

    Article  Google Scholar 

  • Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125 [2008].

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. et al. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem. Biophys.Res. Commun. 380, 177–182 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Taganov, K. D., Boldin, M. P., Chang, K.-J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. 103, 12481–12486 [2006].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G. et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc. Natl Acad. Sci. 106, 15819–15824 [2009].

    Article  PubMed  PubMed Central  Google Scholar 

  • Collison, A., Mattes, J., Plank, M. & Foster, P. S. Inhibition of house dust mite–induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J. Allergy Clin. Immunol. 128, 160–167 [2011]. e164.

    Article  CAS  PubMed  Google Scholar 

  • Tang, B. et al. Identification of MyD88 as a novel target of miR‐155, involved in negative regulation of Helicobacter pylori‐induced inflammation. FEBS Lett. 584, 1481–1486 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhong, M., Zhang, M. & Lv, K. Expression and clinical significance of miR-155 in peripheral blood CD4 [+]; T cells of patients with allergic asthma. Xi bao yu fen. zi mian yi xue za zhi Chin. J. Cell. Mol. Immunol. 28, 540–543 [2012].

    CAS  Google Scholar 

  • O'Connell, R. M. et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. 104, 1604–1609 [2007].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zech, A. & Ayata, K. MicroRNA-155 modulates P2R-signaling and Th2-priming of dendritic cells during allergic airway inflammation in mice. Pneumologie 70, V163 [2016].

    Article  Google Scholar 

  • Lu, T. X., Munitz, A. & Rothenberg, M. E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol. 182, 4994–5002 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Sheedy, F. J. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11, 141 [2010].

    Article  CAS  PubMed  Google Scholar 

  • Sawant, V. D. et al. Serum microRNA-21 as a biomarker for allergic inflammatory disease in children. MicroRNA 4, 36–40 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Veremeyko, T. et al. IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PloS ONE 8, e81774 [2013].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, Z. et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am. J. Hum. Genet. 81, 829–834 [2007].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicodemus-Johnson, J. et al. Maternal asthma and microRNA regulation of soluble HLA-G in the airway. J. Allergy Clin. Immunol. 131, 1496–1503 [2013]. e1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattes, J. et al. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl Acad. Sci. 106, 18704–18709 [2009].

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, M., Mabalirajan, U., Agrawal, A. & Ghosh, B. Proinflammatory role of let-7 miRNAs in experimental asthma? J. Biol. Chem. 285, le19–le19 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polikepahad, S. et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J. Biol. Chem. 285, 30139–30149 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, M. et al. Let-7 microRNA–mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol. 128, 1077–1085 [2011]. e1010.

    Article  CAS  PubMed  Google Scholar 

  • Mayoral, R. J. et al. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PloS ONE 6, e26133 [2011].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayoral, R. J. et al. MicroRNA-221–222 regulate the cell cycle in mast cells. J. Immunol. 182, 433–445 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Li, J. J. et al. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J. Allergy Clin. Immunol. 136, 462–473 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Di Valentin, E. et al. New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 296, L185–L197 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Haj‐Salem, I. et al. MicroRNA‐19a enhances proliferation of bronchial epithelial cells by targeting TGFβR2 gene in severe asthma. Allergy 70, 212–219 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Liao, G., Panettieri, R. A. & Tang, D. D. Micro RNA‐203 negatively regulates c‐Abl, ERK 1/2 phosphorylation, and proliferation in smooth muscle cells. Physiol. Rep. 3, e12541 [2015].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba, Y. et al. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am. J. Respir. Crit. Care Med. 180, 713–719 [2009].

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, M. et al. Decreased miR-192 expression in peripheral blood of asthmatic individuals undergoing an allergen inhalation challenge. BMC Genomics 13, 655 [2012].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie, A. N., Spits, H. & Eberl, G. Innate lymphoid cells in inflammation and immunity. Immunity 41, 366–374 [2014].

    Article  CAS  PubMed  Google Scholar 

  • Christianson, C. A. et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J. Allergy Clin. Immunol. 136, 59–68 [2015]. e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, P. B. et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J. Exp. Med. 214, 3627–3643 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie, A. et al. MicroRNA-155 protects group 2 innate lymphoid cells from apoptosis to promote type-2 immunity. Front. Immunol. 9, 2232 [2018].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, A. et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J. Appl. Physiol. 113, 459–464 [2012].

    Article  CAS  PubMed  Google Scholar 

  • Kim, R. Y. et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. J. Allergy Clin. Immunol. 139, 519–532 [2017].

    Article  CAS  PubMed  Google Scholar 

  • Dong, J. et al. MicroRNA networks in mouse lung organogenesis. PloS ONE 5, e10854 [2010].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, A. E. et al. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev. Dyn. 236, 572–580 [2007].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskaran, M. et al. MicroRNA-127 modulates fetal lung development. Physiol. Genomics. 37, 268–278 [2009].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, T. X. et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-γ pathway, Th2 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 187, 3362–3373 [2011].

    Article  CAS  PubMed  Google Scholar 

  • Weidner, J., Malmhäll, C. & Rådinger, M. MicroRNAs in asthma pathogenesis-from mouse to man. J. Transl. Genet. Genom. 3, 2 [2019].

    Google Scholar 

  • Davis, J. S. et al. Circulating microRNAs and association with methacholine PC20 in the Childhood Asthma Management Program [CAMP] cohort. PloS ONE 12, e0180329 [2017].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y. & Merkel, O. M. Pulmonary delivery of siRNA via polymeric vectors as therapies of asthma. Arch. der Pharmazie 348, 681–688 [2015].

    Article  CAS  Google Scholar 

  • Zafra, M. P. et al. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PloS ONE 9, e91996 [2014].

  • Kho, A. T. et al. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma. Respiratory Res. 19, 128 [2018].

    Article  CAS  Google Scholar 

  • Cheng, W. et al. MiR-143-3p controls TGF-β1-induced cell proliferation and extracellular matrix production in airway smooth muscle via negative regulation of the nuclear factor of activated T cells 1. Mol. Immunol. 78, 133–139 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Spurlock, C. F. III. et al. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat. Commun. 6, 6932 [2015].

    Article  CAS  PubMed  Google Scholar 

  • Huo, X. et al. Decreased epithelial and plasma miR‐181b‐5p expression associates with airway eosinophilic inflammation in asthma. Clin. Exp. Allergy 46, 1281–1290 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Maes, T. et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J. Allergy Clin. Immunol. 137, 1433–1446 [2016].

    Article  CAS  PubMed  Google Scholar 

  • Perry, M. M. et al. Role of non-coding RNAs in maintaining primary airway smooth muscle cells. Respir. Res. 15, 58 [2014].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffler, E. et al. MicroRNA profiling in asthma: potential biomarkers and therapeutic targets. Am. J. Respir. C ell Mol. Biol. 57, 642–650 [2017].

    Article  CAS  Google Scholar 

  • Which cells are involved in asthma?

    Asthma is a chronic airway inflammatory disease characterized by the infiltration of airway T cells, CD+ [T helper] cells, mast cells, basophils, macrophages, and eosinophils.

    What is the main pathophysiology of asthma?

    The pathophysiology of asthma is complex and involves airway inflammation, intermittent airflow obstruction, and bronchial hyperresponsiveness.

    What role does T helper cells play in asthma?

    Asthma is characterized by T helper cell 2 [Th2] type inflammation, leading to airway hyperresponsiveness and tissue remodeling. Th2 cell-driven inflammation is likely to represent an abnormal response to harmless airborne particles.

    Which cells cause inflammation in asthma?

    Th2 effector cells and asthma pathogenesis. Th2 cells have a central role in orchestrating the allergen-induced inflammatory response. Th2 derived IL-4 and IL-13 stimulate B cells to synthesise IgE whilst IL-5 is necessary for eosinophilic inflammation.

    Chủ Đề