Cot 40 độ bằng bao nhiêu

1. Định nghĩa

Với mỗi góc $\alpha $ [${0^0} \leqslant \alpha  \leqslant {180^0}$] ta xác định một điểm M trên nửa đường tròn đơn vị sao cho $\widehat {xOM} = \alpha $ và giả sử điểm M có toạ độ $M\left[ {{x_0};{y_0}} \right]$. Khi đó ta định nghĩa :

* sin của góc $\alpha $ là ${y_0}$, kí hiệu $\sin \alpha  = {y_0}$;

* côsin của góc $\alpha $ là ${x_0}$, kí hiệu $\cos \alpha  = {x_0}$;

* tang của góc $\alpha $ là $\frac{{{y_0}}}{{{x_0}}}\left[ {{x_0} \ne 0} \right]$, kí hiệu $\tan \alpha  = \frac{{{y_0}}}{{{x_0}}}$;

* côtang của góc $\alpha $ là $\frac{{{x_0}}}{{{y_0}}}\left[ {{y_0} \ne 0} \right]$, kí hiệu $\cot \alpha  = \frac{{{x_0}}}{{{y_0}}}$.

Các số sin$\alpha $, cos$\alpha $, tan$\alpha $, cot$\alpha $ được gọi là các giá trị lượng giác của góc $\alpha $.

Chú ý

* Nếu $\alpha $ là góc tù thì cos$\alpha $< 0, tan$\alpha $< 0, cot$\alpha $< 0.

* tan$\alpha $ chỉ xác định khi $\alpha  \ne \frac{\pi }{2} + k\pi $, cot$\alpha $ chỉ xác định khi $\alpha  \ne k\pi ,k \in Z.$

2. Tính chất

Ta có dây cung NM song song với trục Ox và nếu $\widehat {xOM} = \alpha $ thì $\widehat {xON} = {180^0} - \alpha $. 

Ta có ${y_M} = {y_N} = {y_0};{x_M} =  - {x_N} = {x_0}$. Do đó:

$\begin{gathered}   \sin \alpha  = \sin \left[ {{{180}^0} - \alpha } \right] \hfill \\   \cos \alpha  =  - \cos \left[ {{{180}^0} - \alpha } \right] \hfill \\   \tan \alpha  =  - \tan \left[ {{{180}^0} - \alpha } \right] \hfill \\   \cot \alpha  =  - \cot \left[ {{{180}^0} - \alpha } \right] \hfill \\ \end{gathered} $

3. Giá trị lượng giác của các góc đặc biệt

Bảng giá trị lượng giác của các góc đặc biệt

Trong bảng, kí hiệu $\parallel $ để chỉ giá trị lượng giác không xác định.

Chú ý

Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá trị lượng giác của một số góc đặc biệt khác.

Chẳng hạn:

$\begin{gathered}   \sin {120^0} = \sin \left[ {{{180}^0} - {{60}^0}} \right] = \sin {60^0} = \frac{{\sqrt 3 }}{2} \hfill \\   \cos {135^0} = \cos \left[ {{{180}^0} - {{45}^0}} \right] =  - \cos {45^0} =  - \frac{{\sqrt 2 }}{2} \hfill \\ \end{gathered} $

4. Góc giữa hai vectơ

a] Định nghĩa

Cho hai vectơ $\overrightarrow a $ và $\overrightarrow b $ đều khác vectơ $\overrightarrow 0 $. Từ một điểm O bất kì ta vẽ $\overrightarrow {OA}  = \overrightarrow a $ và $\overrightarrow {OB}  = \overrightarrow b $ . Góc $\widehat {AOB}$ với số đo từ ${0^0}$ đến ${180^0}$ được gọi là góc giữa hai vectơ $\overrightarrow a $ và $\overrightarrow b $. Ta kí hiệu góc giữa hai vectơ $\overrightarrow a $ và $\overrightarrow b $ là [$\overrightarrow a $, $\overrightarrow b $]. Nếu [$\overrightarrow a $, $\overrightarrow b $] $ = {90^0}$ thì ta nói rằng $\overrightarrow a $ và $\overrightarrow b $ vuông góc với nhau, kí hiệu là $\overrightarrow a  \bot \overrightarrow b $ hoặc $\overrightarrow b  \bot \overrightarrow a $.

b] Chú ý

Từ định nghĩa ta có [$\overrightarrow a $, $\overrightarrow b $] = [$\overrightarrow b $, $\overrightarrow a $].

5. Sử dụng máy tính bỏ túi để tính giá trị lượng giác của một góc

Ta có thể sử dụng các loại máy tính bỏ túi để tính giá trị lượng giác của một góc, chẳng hạn đối với máy CASIO fx - 500MS cách thực hiện như sau :

Định lí 1. Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền.

Ví dụ 1. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Ta có: AB2 = BC . BH; AC2 = BC . HC.

2. Một số hệ thức liên quan tới đường cao

Định lí 2. Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền.

Ví dụ 2. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Ta có: AH2 = BH . HC.

Định lí 3. Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng.

Ví dụ 3. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Ta có: AB . AC = BC . AH.

Định lí 4. Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.

Ví dụ 4. Tam giác ABC vuông tại A, đường cao AH.

Khi đó, BH và CH lần lượt là hình chiếu của AB và AC trên BC.

Ta có: 1AH2=1AB2+1AC2. 

3. Khái niệm tỉ số lượng giác của một góc nhọn

+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu là sin α.

+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu là cos α.

+ Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu là tan α.

+ Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu là cot α.

Ví dụ 1. Cho tam giác ABC có C^=α .

Khi đó: sinα=ABBC; cos α=ACBC; tan α=ABAC; cot α=ACAB 

Nhận xét: Nếu α là một góc nhọn thì:

0 < sin α < 1; 0 < cos α < 1; tan α > 0; cot α > 0.

Ví dụ 2. Cho tam giác ABC có C^=α

Khi đó: 0

Chủ Đề