Tìm giá trị lớn nhất nhỏ nhất của phương trình lượng giác

08:48:4809/12/2020

Một số dạng bài tập tìm Giá trị lớn nhất [GTLN] và giá trị nhỏ nhất [GTNN] của hàm số trên một đoạn đã được HayHocHoi giới thiệu ở bài viết trước. Nếu chưa xem qua bài này, các em có thể xem lại nội dung bài viết tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Trong nội dung bài này, chúng ta tập trung vào một số bài tập tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác, vì hàm số lượng giác có tập nghiệm phức tạp và dễ gây nhầm lẫn cho rất nhiều em.

I. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số - kiến thức cần nhớ

• Cho hàm số y = f[x] xác định trên tập D ⊂ R.

- Nếu tồn tại một điểm x0 ∈ X sao cho f[x] ≤ f[x0] với mọi x ∈ X thì số M = f[x0] được gọi là giá trị lớn nhất của hàm số f trên X.

 Ký hiệu: 

- Nếu tồn tại một điểm x0 ∈ X sao cho f[x] ≥ f[x0] với mọi x ∈ X thì số m = f[x0] được gọi là giá trị nhỏ nhất của hàm số f trên X.

 Ký hiệu: 

II. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác

* Phương pháp tìm GTLN và GTNN của hàm số lượng giác

+ Để tìm Max [M], min [m] của hàm số y = f[x] trên [a;b] ta thực hiện các bước sau:

- Bước 1: Tính f'[x], tìm nghiệm f'[x] = 0 trên [a;b].

- Bước 2: Tính các giá trị f[a]; f[x1]; f[x2];...; f[b] [xi là nghiệm của f'[x] = 0]

- Bước 3: So sánh rồi chọn M và m.

> Lưu ý: Để tìm M và m trên [a;b] thì thực hiện tương tự như trên nhưng thay f[a] bằng 

 và f[b] bằng 
 [Các giới hạn này chỉ để so sáng khong chọn làm GTLN và GTNN].

• Nếu f tăng trên [a;b] thì M = f[b], m = f[a].

• Nếu f giảm trên [a;b] thì m = f[b], M = f[a].

• Nếu trên D hàm số liên tục và chỉ có 1 cực trị thì giá trị cực trị đó là GTLN nếu là cực đại, là GTNN nếu là cực tiểu.

* Bài tập 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm lượng giác sau:

y = sinx.sin2x trên [0;π]

* Lời giải:

- Ta có f[x] = y = sinx.sin2x

 

 

 

Vậy 

* Bài tập 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm y = sinx + cosx trong đoạn [0;2π].

* Lời giải:

- Ta có: f[x] = y = sinx + cosx ⇒ f'[x] = cosx - sinx 

 f'[x] = 0 ⇔ cosx = sinx ⇔ x = π/4 hoặc x = 5π/4

- Như vậy, ta có:

  f[0] = 1; f[2π] = 1;

  

  

Vậy 

• Cách khác:

 f[x] = sinx + cosx = √2.sin[x + π/4]

 Vì -1 ≤ sin[x + π/4] ≤ 1 nên -√2 ≤ √2.sin[x + π/4] ≤ √2.

 Nên 

* Bài tập 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y= 3sinx+ 4cosx + 1

* Lời giải:

- Với bài này ta có thể áp dụng bất đẳng thức sau:

 [ac + bd]2 ≤ [c2 + d2][a2 + b2] dấu "=" xảy ra khi a/c = b/d

- Vậy ta có: [3sinx+ 4cosx]2 ≤ [32 + 42][sin2x + cos2x] = 25

Suy ra: -5 ≤ 3sinx+ 4cosx ≤ 5

 ⇒ -4 ≤ y ≤ 6

Vậy Maxy = 6 đạt được khi tanx = 3/4

 miny = -4 đạt được khi tanx = -3/4.

> Nhận xét: Cách làm tương tự ta có được kết quả tổng quát sau:

 và 

Tức là: 

* Bài tập 4: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 3cosx + sinx - 2

* Lời giải:

- Bài này làm tương tự bài 3 ta được: 

* Bài tập 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = 3cosx + 2

* Lời giải:

- Ta có: -1 ≤ cosx ≤ 1 ∀x ∈ R.

 Maxy = 3.1 + 1 = 4 khi cosx = 1 ⇔x = k2π

 Minxy = 3.[-1] + 1 = -2 khi cosx = -1 ⇔x = π + k2π

* Bài tập 6: Tìm m để phương trình: m[1 + cosx]2 = 2sin2x + 2 có nghiệm trên [-π/2;π/2].

* Lời giải:

- Phương trình trên tương đương: 

 [*]

Đặt 

khi đó: 

[*] ⇔ t4 - 4t3 + 2t2 + 4t + 1 = 2m.

Xét f[t] =  t4 - 4t3 + 2t2 + 4t + 1 trên đoạn [-1;1]

Ta có: f'[t] = 4t3 - 12t2 + 4t + 4 = 0 ⇔ t = 1; t = 1 - √2; t = 1 + √2[loại]

Có: f[-1] = 1 + 4 + 2 - 4 + 1 = 4

 f[1] = 1 - 4 + 2 + 4 + 1 = 4

 f[1 - √2] = [1 - √2]4 - 4[1 - √2]3 + 2[1 - √2]2 + 4[1 - √2] + 1 = 0

Ta được: Minf[t] = 0; Maxf[t] = 4

Để phương trình có nghiệm ta phải có 0 ≤ 2m ≤ 4.

Vậy 0 ≤ m ≤ 2 thì phương trình có nghiệm.

III. Bài tập Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác tự làm

* Bài tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác: 

 trên [0;π].

* Đáp số bài tập 1:

 

 

* Bài tập 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác: f[x] = 2cos2x - 3cosx - 4 trên [-π/2;π/2].

* Đáp số bài tập 2:

 

 

* Bài tập 3: Tìm giá trị lớn nhất của hàm số: f[x] = x + 2cosx trên [0;π/2].

* Đáp số bài tập 3:

 

* Bài tập 4: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác: f[x] = 2sin2x + 2sinx - 4.

* Đáp số bài tập 4:

 

 

* Bài tập 5: Tìm giá trị lớn nhất của hàm số: y = x + sin2x trên [-π/2;π/2].

* Đáp số bài tập 5:

Như vậy, để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác ngoài cách dùng đạo hàm các em cũng cần vận dụng một cách linh hoạt các tính chất đặc biệt của hàm lượng giác hay bất đẳng thức. Hy vọng, bài viết này hữu ích cho các em, chúc các em học tập tốt.

Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác là một trong những nội dung quan trọng trong chương trình lớp 11 mà học sinh cần phải ghi nhớ.

Tìm giá trị lớn nhất, nhỏ nhất của hàm số lượng giác bao gồm cách tìm giá trị lớn nhất nhỏ nhất của hàm số lượng giác, ví dụ minh họa và một số dạng bài tập có đáp án kèm theo. Qua đó giúp các bạn học sinh có thêm nhiều tư liệu tham khảo, nhanh chóng ghi nhớ được kiến thức để biết cách giải các bài tập Toán 11. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn theo dõi tại đây.

Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:

+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1

+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1

+ Bất đẳng thức bunhia –copski: Cho hai bộ số [a1; a2] và [b1;b2] khi đó ta có:

[a1.b1+ a2.b2 ]2 ≤ [ a12+ a22 ].[ b12+ b22 ]

Dấu “=” xảy ra khi: a1/a2 = b1/b2

+ Giả sử hàm số y= f[x] có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].

+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2

2. Ví dụ giá trị lớn nhất, nhỏ nhất của hàm số lượng giác

Ví dụ 1: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?

A.x0=π+k2π, kϵZ .

B.x0=π/2+kπ, kϵZ .

C.x0=k2π, kϵZ .

D.x0=kπ ,kϵZ .

Trả lời.

Chọn B.

Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3

Do đó giá trị nhỏ nhất của hàm số bằng 1 .

Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .

Ví dụ 2: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.

A.M= 3 ;m= 0

B. M=2 ; m=0.

C. M=2 ; m= 1.

D.M= 3 ; m= 1.

Trả lời.

Chọn C.

Ta có: y = sin2 x+ 2cos2x = [sin2x+ cos2x] + cos2x = 1+ cos2 x.

Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2

Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1

Ví dụ 3: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 4sinx - 3

A.M= 1; m= - 7

B. M= 7; m= - 1

C. M= 3; m= - 4

D. M=4; m= -3

Lời giải

Chọn A

Ta có : - 1 ≤ sinx ≤ 1 nên - 4 ≤ 4sinx ≤ 4

Suy ra : - 7 ≤ 4sinx-3 ≤ 1

Do đó : M= 1 và m= - 7

Ví dụ 4: Tìm tập giá trị T của hàm số y= -2cos2x + 10 .

A. [5; 9]

B.[6;10]

C. [ 8;12]

D. [10; 14]

Trả lời

Chọn C

Với mọi x ta có : - 1 ≤ cos⁡2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

⇒ 8 ≤ -2cos2x+10 ≤ 12

Do đó tập giá trị của hàm số đã cho là : T= [ 8 ;12]

3. Bài tập giá trị lớn nhất, nhỏ nhất của hàm số lượng giác

Câu 1: Tìm giá trị lớn nhất, nhỏ nhất của hàm số:

Hướng dẫn giải

Ta có:

Do

hay

  • khi và chỉ khi
  • khi và chỉ khi

Vậy giá trị lớn nhất của hàm số là 2, giá trị nhỏ nhất của hàm số là -1

Câu 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

Hướng dẫn giải

Ta có:

  • khi và chỉ khi
  • khi và chỉ khi

Vậy giá trị lớn nhất của biểu thức là 4, giá trị nhỏ nhất của biểu thức là 1

Ví dụ 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

Hướng dẫn giải

Ta có:

Đặt

ta có hàm số

Giá trị lớn nhất của hàm số là 7 khi

Giá trị nhỏ nhất của hàm số là 1 khi

Ví dụ 4: Tìm giá trị lớn nhất, nhỏ nhất của hàm số:

Hướng dẫn giải

a. Xét phương trình

Phương trình có nghiệm

Vậy hàm số có giá trị lớn nhất là 10, giá trị nhỏ nhất là 0

b. Ta có:

  • khi và chỉ khi
  • khi và chỉ khi

Vây giá trị lớn nhất của hàm số là 5

Giá trị nhỏ nhất của hàm số là 1

Video liên quan

Chủ Đề