Electroactive là gì

Electroactive là gì

  • PDFView PDF

Electroactive là gì

Electroactive là gì

Under a Creative Commons license

Open access

Highlights

Articular cartilage has a poor regeneration capacity due to its avascular nature.

Cartilage repair using electrically stimulated hydrogel scaffolds is a promising approach.

A simulation model on electromechanics of electroactive hydrogels is presented.

The model serves as basis for designing optimized experiments for cartilage-tissue repair.

Abstract

Background and Objective

The self-repair capability of articular cartilage is limited because of non-vascularization and low turnover of its extracellular matrix. Regenerating hyaline cartilage remains a significant clinical challenge as most non-surgical and surgical treatments provide only mid-term relief. Eventually, further pain and mobility loss occur for many patients in the long run due to further joint deterioration. Repair of articular cartilage tissue using electroactive scaffolds and biophysical stimuli like electrical and osmotic stimulation may have the potential to heal cartilage defects occurring due to trauma, osteoarthritis, or sport-related injuries. Therefore, the focus of the current study is to present a computational model of electroactive hydrogels for the cartilage-tissue repair as a first step towards an optimized experimental design.

Methods

The multiphysics transport model that mainly includes the Poisson–Nernst–Planck equations and the mechanical equation is used to find the electrical stimulation response of the polyelectrolyte hydrogels. Based upon this, a numerical model on electromechanics of electroactive hydrogels seeded with chondrocytes is presented employing the open-source software FEniCS, which is a Python library for finite-element analysis.

Results

We analyzed the ionic concentrations and electric potential in a hydrogel sample and the cell culture medium, the osmotic pressure created due to ionic concentration variations and the resulting hydrogel displacement. The proposed mathematical model was validated with examples from literature.

Conclusions

The presented model for the electrical and osmotic stimulation of a hydrogel sample can serve as a useful tool for the development and analysis of a cartilaginous scaffold employing electrical stimulation. By analyzing various parameters, we pave the way for future research on a finer scale using open-source software.

Keywords

Electrical stimulation

Scaffolds

Articular cartilage

Electroactive hydrogels

Finite-element simulation

Multiphysics model

Cited by (0)

© 2020 The Author(s). Published by Elsevier B.V.

2. National Institute For Health And Care Excellence (2021) . Spinal Injury: Assessment and initial management. london: national institute for health and care excellence. Available online at: https://www.nice.org.uk/guidance/ng41 (accessed July 8, 2021). [Google Scholar]

3. Chamberlain JD, Meier S, Mader L, Von Groote PM, Brinkhof MWG. Mortality and longevity after a spinal cord injury: systematic review and meta-analysis. Neuroepidemiology. (2015) 44:182–98. 10.1159/000382079 [PubMed] [CrossRef] [Google Scholar]

4. Sweis R, Biller J. Systemic complications of spinal cord injury. Curr Neurol Neurosci Rep. (2017) 17:8. 10.1007/s11910-017-0715-4 [PubMed] [CrossRef] [Google Scholar]

5. Anson CA, Shepherd C. Incidence of secondary complications in spinal cord injury. Int J Rehabil. (1996) 19:55–66. 10.1097/00004356-199603000-00006 [PubMed] [CrossRef] [Google Scholar]

6. McDaid D, Park AL, Gall A, Purcell M, Bacon M. Understanding and modelling the economic impact of spinal cord injuries in the United Kingdom. Spinal Cord. (2019) 57:778–88. 10.1038/s41393-019-0285-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Fehlings MG, Tetreault LA, Aarabi B, Anderson P, Arnold PM, Brodke DS, et al.. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the type and timing of rehabilitation. Global Spine J. (2017) 7:231s−8s. 10.1177/2192568217701910 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, et al.. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. (2013) 60:82–91. 10.1227/01.neu.0000430319.32247.7f [PubMed] [CrossRef] [Google Scholar]

10. Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, et al.. Clinical assessment following acute cervical spinal cord injury. Neurosurgery. (2013) 72:40–53. 10.1227/NEU.0b013e318276edda [PubMed] [CrossRef] [Google Scholar]

11. Bagnall AM, Jones L, Duffy S, Riemsma RP. Spinal fixation surgery for acute traumatic spinal cord injury. Cochrane Database System Rev. (2008) 1. 10.1002/14651858.CD004725.pub2 [PubMed] [CrossRef] [Google Scholar]

12. Wilson JR, Tetreault LA, Kwon BK, Arnold PM, Mroz TE, Shaffrey C, et al.. Timing of decompression in patients with acute spinal cord injury: a systematic review. Global Spine J. (2017) 7:95s−115s. 10.1177/2192568217701716 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Godzik J, Dalton J, Hemphill C, Walker C, Chapple K, Cook A, et al.. Early surgical intervention among patients with acute central cord syndrome is not associated with higher mortality and morbidity. J Spine Surg. (2019) 5:466–74. 10.21037/jss.2019.09.26 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Katoh SEL, Masri WS. Neurological recovery after conservative treatment of cervical cord injuries. J Bone Joint Surg (Br). (1994) 76:225–8. 10.1302/0301-620X.76B2.8113281 [PubMed] [CrossRef] [Google Scholar]

15. Katoh S, El Masri WS, Jaffray D, Mccall IW, Eisenstein SM, Pringle RG, et al.. Neurologic outcome in conservatively treated patients with incomplete closed traumatic cervical spinal cord injuries. Spine. (1996) 21:2345–51. 10.1097/00007632-199610150-00008 [PubMed] [CrossRef] [Google Scholar]

16. Masri WE, Kumar N. Active physiological conservative management in traumatic spinal cord injuries - an evidence-based approach. Trauma. (2017) 19:10–22. 10.1177/1460408617698508 [CrossRef] [Google Scholar]

17. El Masri YWS. Traumatic spinal injury and spinal cord injury: point for active physiological conservative management as compared to surgical management. Spinal Cord Series Cases. (2018) 4:1–4. 10.1038/s41394-018-0045-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Abudou M, Chen X, Kong X, Wu T. Surgical versus non-surgical treatment for thoracolumbar burst fractures without neurological deficit. Cochrane Database Syst Rev. (2013) 6:CD005079. 10.1002/14651858.CD005079.pub3 [PubMed] [CrossRef] [Google Scholar]

19. Mataliotakis GI, Tsirikos AI. Spinal cord trauma: pathophysiology, classification of spinal cord injury syndromes, treatment principles and controversies. Orthop Trauma. (2016) 30:440–9. 10.1016/j.mporth.2016.07.006 [CrossRef] [Google Scholar]

20. Ahmed AI, Lucas JD. Spinal cord injury: pathophysiology and strategies for regeneration. Orthopaedics Trauma. (2020) 34:266–71. 10.1016/j.mporth.2020.06.003 [CrossRef] [Google Scholar]

21. Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, et al.. Biomarkers in spinal cord injury: prognostic insights and future potentials. Front Neurol. (2019) 10:27. 10.3389/fneur.2019.00027 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. (2016) 10:98. 10.3389/fncel.2016.00098 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. (2019) 10:282. 10.3389/fneur.2019.00282 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Exp Neurol. (2015) 269:169–87. 10.1016/j.expneurol.2015.04.006 [PubMed] [CrossRef] [Google Scholar]

26. Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. (2019) 10:3879. 10.1038/s41467-019-11707-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Myers SA, Bankston AN, Burke DA, Ohri SS, Whittemore SR. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Experi Neurol. (2016) 283:560–72. 10.1016/j.expneurol.2016.04.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Liu J, Yang X, Jiang L, Wang C, Yang M. Neural plasticity after spinal cord injury. Neural Regener Res. (2012) 7:386–91. 10.3969/j.issn.1673-5374.2012.05.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol. (2001) 171:153–69. 10.1006/exnr.2001.7734 [PubMed] [CrossRef] [Google Scholar]

30. Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci. (2018) 21:9–15. 10.1038/s41593-017-0033-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med. (2009) 32:105–14. 10.1080/10790268.2009.11760761 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Dalamagkas K, Tsintou M, Seifalian AM. Stem cells for spinal cord injuries bearing translational potential. Neural Regener Res. (2018) 13:35–42. 10.4103/1673-5374.224360 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Cízková D, Rosocha J, Vanický I, Jergová S, Cízek M. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol. (2006) 26:1167–80. 10.1007/s10571-006-9093-1 [PubMed] [CrossRef] [Google Scholar]

34. Bottai D, Cigognini D, Madaschi L, Adami R, Nicora E, Menarini M, et al.. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice. Exp Neurol. (2010) 223:452–63. 10.1016/j.expneurol.2010.01.010 [PubMed] [CrossRef] [Google Scholar]

35. Stenudd M, Sabelström H, Frisén J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. (2015) 72:235–7. 10.1001/jamaneurol.2014.2927 [PubMed] [CrossRef] [Google Scholar]

36. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. (1996) 10:3129–40. 10.1101/gad.10.24.3129 [PubMed] [CrossRef] [Google Scholar]

37. Rajan P, McKay RD. Multiple routes to astrocytic differentiation in the CNS. J Neurosci. (1998) 18:3620–9. 10.1523/JNEUROSCI.18-10-03620.1998 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Hughes S, Lillien L, Raff M, Rohrer H, Sendtner M. Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature. (1988) 335:70–3. 10.1038/335070a0 [PubMed] [CrossRef] [Google Scholar]

39. Schubert D, Herrera F, Cumming R, Read J, Low W, Maher P, et al.. Neural cells secrete a unique repertoire of proteins. J Neurochem. (2009) 109:427–35. 10.1111/j.1471-4159.2009.05968.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Song XY Li F, Zhang FH, Zhong JH, Zhou XF. Peripherally-derived bdnf promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One. (2008) 3:1707. 10.1371/journal.pone.0001707 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Gilmour AD, Reshamwala R, Wright AA, Ekberg JA, St John JA. Optimizing olfactory ensheathing cell transplantation for spinal cord injury repair. J Neurotrauma. (2020) 37:817–29. 10.1089/neu.2019.6939 [PubMed] [CrossRef] [Google Scholar]

42. Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, Baikpour M, Nasirinezhad F, Safari S, et al.. Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep. (2018) 8:325. 10.1038/s41598-017-18754-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. García-Alías G, López-Vales R, Forés J, Navarro X, Verdú E. Acute transplantation of olfactory ensheathing cells or schwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res. (2004) 75:632–41. 10.1002/jnr.20029 [PubMed] [CrossRef] [Google Scholar]

44. Gorrie CA, Hayward I, Cameron N, Kailainathan G, Nandapalan N, Sutharsan R, et al.. Effects of human oec-derived cell transplants in rodent spinal cord contusion injury. Brain Res. (2010) 1337:8–20. 10.1016/j.brainres.2010.04.019 [PubMed] [CrossRef] [Google Scholar]

45. Lang BC, Zhang Z, Lv LY, Liu J, Wang TY, Yang LH, et al.. Oecs transplantation results in neuropathic pain associated with bdnf regulating erk activity in rats following cord hemisection. BMC Neurosci. (2013) 2:80. 10.1186/1471-2202-14-80 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Deumens R, Van Gorp SF, Bozkurt A, Beckmann C, Führmann T, Montzka K, et al.. Motor outcome and allodynia are largely unaffected by novel olfactory ensheathing cell grafts to repair low-thoracic lesion gaps in the adult rat spinal cord. Behav Brain Res. (2013) 15:185–9. 10.1016/j.bbr.2012.09.036 [PubMed] [CrossRef] [Google Scholar]

47. Wang C, Sun C, Hu Z, Huo X, Yang Y, Liu X, et al.. Improved neural regeneration with olfactory ensheathing cell inoculated plga scaffolds in spinal cord injury adult rats. Neurosignals. (2017) 25:1–14. 10.1159/000471828 [PubMed] [CrossRef] [Google Scholar]

48. Huang H, Xi H, Chen L, Zhang F, Liu Y. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant. (2012) 21:23. 10.3727/096368912X633734 [PubMed] [CrossRef] [Google Scholar]

49. Mackay-Sim A, Féron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al.. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain: J Neurol. (2008) 131:2376–86. 10.1093/brain/awn173 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Zheng Z, Liu G, Chen Y, Wei S. Olfactory ensheathing cell transplantation improves sympathetic skin responses in chronic spinal cord injury. Neural Regen Res. (2013) 8:2849–55. [PMC free article] [PubMed] [Google Scholar]

51. Thompson M, Mei SHJ, Wolfe D, Champagne J, Fergusson D, Stewart DJ, et al.. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: an updated systematic review and meta-analysis. Clin Med. (2020) 19:100249. 10.1016/j.eclinm.2019.100249 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci. (2002) 22:6623–30. 10.1523/JNEUROSCI.22-15-06623.2002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Abrams MB, Dominguez C, Pernold K, Reger R, Wiesenfeld-Hallin Z, Olson L, et al.. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci. (2009) 27:307–21. 10.3233/RNN-2009-0480 [PubMed] [CrossRef] [Google Scholar]

54. Assinck P, Duncan GJ, Hilton J, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. (2017) 20:637–64. 10.1038/nn.4541 [PubMed] [CrossRef] [Google Scholar]

55. Liau LL, Al-Masawa ME, Koh B, Looi QH, Foo JB, Lee SH, et al.. The potential of mesenchymal stromal cell as therapy in neonatal diseases. Front Pediatr. (2020) 8:591693. 10.3389/fped.2020.591693 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, et al.. A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant. (2017) 26:585–603. 10.3727/096368916X693671 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR. A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery. (2015) 78:436–47. 10.1227/NEU.0000000000001056 [PubMed] [CrossRef] [Google Scholar]

58. Chen C, Bai X, Ding Y, Lee I. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomatar Res. (2019) 23:25. 10.1186/s40824-019-0176-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, et al.. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res. (2020) 15:1686–700. 10.4103/1673-5374.276340 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Yang Y, Pang M, Chen YY, Zhang LM, Liu H, Tan J, et al.. Human umbilical cord mesenchymal stem cells to treat spinal cord injury in the early chronic phase: study protocol for a prospective, multicenter, randomized, placebo-controlled, single-blinded clinical trial. Neural Regen Res. (2020) 15:1532–8. 10.4103/1673-5374.274347 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Albu S, Kumru H, Coll R, Vives J, Vallés M, Benito-Penalva J, et al.. Clinical effects of intrathecal administration of expanded wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. (2021) 23:146–56. 10.1016/j.jcyt.2020.08.008 [PubMed] [CrossRef] [Google Scholar]

62. Amemori T, Jendelová P, RuŽičková K, Arboleda D, Syková E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. (2010) 12:212–25. 10.3109/14653240903440103 [PubMed] [CrossRef] [Google Scholar]

63. Niapour A, Karamali F, Nemati S, Taghipour Z, Mardani M, Nasr-Esfahani MH, et al.. Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery. Cell Transplant. (2012) 21:827–43. 10.3727/096368911X593163 [PubMed] [CrossRef] [Google Scholar]

64. Salehi M, Pasbakhsh P, Soleimani M, Abbasi M, Hasanzadeh G, Modaresi MH, et al.. Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell. Iran Biomed J. (2009) 13:125–135. Available online at: http://ibj.pasteur.ac.ir/article-1-71-en.html [PubMed] [Google Scholar]

65. Namestnikova DD, Cherkashova EA, Sukhinich KK, Gubskiy IL, Leonov GE, Gubsky LV, et al.. Combined cell therapy in the treatment of neurological disorders. Biomedicines. (2020) 8:613. 10.3390/biomedicines8120613 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, et al.. Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett. (2007) 426:69–74. 10.1016/j.neulet.2007.08.048 [PubMed] [CrossRef] [Google Scholar]

67. Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, et al.. Human Neural Stem Cells Differentiate And Promote Locomotor Recovery In Spinal Cord-Injured Mice. Proc Natl Acad Sci U S A. (2005) 102:14069–74. 10.1073/pnas.0507063102 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, et al.. Transplanted Adult Spinal Cord-Derived Neural Stem/Progenitor Cells Promote Early Functional Recovery After Rat Spinal Cord Injury. Neuroscience. (2008) 155:760–70. 10.1016/j.neuroscience.2008.05.042 [PubMed] [CrossRef] [Google Scholar]

69. Uchida N, Chen K, Dohse M, Hansen KD, Dean J, Buser JR, et al.. Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med. (2012) 4:155ra136. 10.1126/scitranslmed.3004371 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Mothe AJ, Tator CH. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol. (2008) 213:176–90. 10.1016/j.expneurol.2008.05.024 [PubMed] [CrossRef] [Google Scholar]

71. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int. (2017) 106:94–100. 10.1016/j.neuint.2017.02.006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS, et al.. Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells. (2015) 33:1036–41. 10.1002/stem.1959 [PubMed] [CrossRef] [Google Scholar]

73. Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. (2010) 7:338–53. 10.1016/j.nurt.2010.07.006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. (2017) 8:E3108. 10.1038/cddis.2017.504 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Graf T, Enver T. Forcing cells to change lineages. Nature. (2009) 462:587–94. 10.1038/nature08533 [PubMed] [CrossRef] [Google Scholar]

76. Their M, Wörsdörfer P, Lakes YB, Gorris R, Herms S, Opitz T, et al.. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. (2012) 10:473–9. 10.1016/j.stem.2012.03.003 [PubMed] [CrossRef] [Google Scholar]

77. Zhu S, Ambasudhan R, Sun W, Kim HJ, Talantova M, Wang X, et al.. Small molecules enable oct4-mediated direct reprogramming into expandable human neural stem cells. Cell Res. (2014) 24:126–9. 10.1038/cr.2013.156 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Ge W, Ren C, Duan X, Geng D, Zhang C, Liu X. Differentiation of mesenchymal stem cells into neural stem cells using cerebrospinal fluid. Cell Biochem Biophys. (2015) 71:449–55. 10.1007/s12013-014-0222-z [PubMed] [CrossRef] [Google Scholar]

79. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al.. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by sox1 activation. Stem Cells Dev. (2014) 23:515–29. 10.1089/scd.2013.0263 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Zholudeva LV, Jin Y, Qiang L, Lane MA, Fischer I. Preparation of neural stem cells and progenitors: neuronal production and grafting applications. Methods Mol Biol. (2021) 2311:73–108. 10.1007/978-1-0716-1437-2_7 [PubMed] [CrossRef] [Google Scholar]

81. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Mácia A, et al.. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. (2010) 28:1568–70. 10.1002/stem.471 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Yasuda S, Kusakawa S, Kuroda T, Miura T, Tano K, Takada N, et al.. Tumorigenicity-associated characteristics of human ips cell lines. PLoS One. (2018) 13:E0205022. 10.1371/journal.pone.0205022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, et al.. Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res. (2013) 112:523–33. 10.1161/CIRCRESAHA.111.256149 [PubMed] [CrossRef] [Google Scholar]

84. Chen F, Cai B, Gao Y, Yuan X, Cheng F, Wang T, et al.. Suicide gene-mediated ablation of tumor-initiating mouse pluripotent stem cells. Biomaterials. (2013) 34:1701–11. 10.1016/j.biomaterials.2012.11.018 [PubMed] [CrossRef] [Google Scholar]

85. Chang EA, Jin SW, Nam MH, Kim SD. Human induced pluripotent stem cells: clinical significance and applications in neurologic diseases. J Korean Neurosurg Soc. (2019) 62:493–501. 10.3340/jkns.2018.0222 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Khazaei M, Ahuja CS, Nakashima H, Nagoshi N, Li L, Wang J., et al.. Gdnf rescues the fate of neural progenitor grafts by attenuating notch signals in the injured spinal cord in rodents. Sci Transl Med. (2020) 12:3538. 10.1126/scitranslmed.aau3538 [PubMed] [CrossRef] [Google Scholar]

87. Shin JC, Kim KN, Yoo J, Kim IS, Yun S, Lee H, et al.. Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plast. (2015) 2015:630932. 10.1155/2015/630932 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Ghobrial GM, Anderson KD, Dididze M, Martinez-Barrizonte J, Sunn GH, Gant KL, et al.. Human Neural Stem Cell Transplantation In Chronic Cervical Spinal Cord Injury: Functional Outcomes At 12 Months In A Phase Ii Clinical Trial. Neurosurgery. (2017) 64:87–91. 10.1093/neuros/nyx242 [PubMed] [CrossRef] [Google Scholar]

89. Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, et al.. A first-in-human, phase i study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell. (2018) 22:941–950.E6. 10.1016/j.stem.2018.05.014 [PubMed] [CrossRef] [Google Scholar]

90. Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, et al.. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurotrauma. (2019) 36:891–902. 10.1089/neu.2018.5843 [PubMed] [CrossRef] [Google Scholar]

91. Tiwari S, Khan S, Kumar SV, Rajak R, Sultana A, Pasha SA, et al.. Efficacy and safety of neural stem cell therapy for spinal cord injury: a systematic literature review. Therapie. (2021) 76:201–10. 10.1016/j.therap.2020.06.011 [PubMed] [CrossRef] [Google Scholar]

92. Kumamaru H, Lu P, Rosenzweig ES, Kadoya K, Tuszynski MH. Regenerating corticospinal axons innervate phenotypically appropriate neurons within neural stem cell grafts. Cell Rep. (2019) 26:2329–39. 10.1016/j.celrep.2019.01.099 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, et al.. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. (2018) 24:484–90. 10.1038/nm.4502 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Lu P, Wang Y, Graham L, Mchale K, Gao M, Wu D, et al.. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. (2012) 150:1264–73. 10.1016/j.cell.2012.08.020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Ceto S, Sekiguchi KJ, Takashima Y, Nimmerjahn A, Tuszynski MH. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell. (2020) 27:430–40. 10.1016/j.stem.2020.07.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Centeno EGZ, Cimarosti H, Bithell A. 2d Versus 3d human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener. (2018) 13:27. 10.1186/s13024-018-0258-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Du BL, Zeng X, Ma YH, Lai BQ, Wang JM, Ling EA, et al.. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection. J Biomed Mater Res A. (2015) 103:1533–45. 10.1002/jbm.a.35290 [PubMed] [CrossRef] [Google Scholar]

98. Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer. (2006) 6:613–25. 10.1038/nrc1929 [PubMed] [CrossRef] [Google Scholar]

99. Webber DJ, Bradbury EJ, Mcmahon SB, Minger SL. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med. (2007) 2:929–45. 10.2217/17460751.2.6.929 [PubMed] [CrossRef] [Google Scholar]

100. Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, et al.. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. (2008) 6:E182. 10.1371/journal.pbio.0060182 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Piltti K. M., Salazar D. L., Uchida N., Cummings B. J., erson A. J. (2013). Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy. Stem Cells Translational Medicine, 2(3):204-216. 10.5966/sctm.2012-0110 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Hofstetter CP, Holmström NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, et al.. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. (2005) 8:346–53. 10.1038/nn1405 [PubMed] [CrossRef] [Google Scholar]

103. Macias MY, Syring MB, Pizzi MA, Crowe MJ, Alexanian AR, Kurpad SN. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol. (2006) 201:335–48. 10.1016/j.expneurol.2006.04.035 [PubMed] [CrossRef] [Google Scholar]

104. Takahashi Y, Tsuji O, Kumagai G, Hara CM, Okano HJ, Miyawaki A, et al.. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant. (2011) 20:727–39. 10.3727/096368910X536554 [PubMed] [CrossRef] [Google Scholar]

105. Wang Y, Wei YT, Zu ZH. Combination of hyaluronic acid hydrogel scaffold and plga microspheres for supporting survival of neural stem cells. Pharm Res. (2011) 28:1406. 10.1007/s11095-011-0452-3 [PubMed] [CrossRef] [Google Scholar]

106. Gao M, Lu P, Bednark B, Lynam D, Conner JM, Sakamoto J, et al.. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials. (2013) 34:1529–36. 10.1016/j.biomaterials.2012.10.070 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Robinson J, Lu P. Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp Neurol. (2017) 291:87–97. 10.1016/j.expneurol.2017.02.007 [PubMed] [CrossRef] [Google Scholar]

108. Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials. (2009) 30:6867–78. 10.1016/j.biomaterials.2009.09.002 [PubMed] [CrossRef] [Google Scholar]

109. Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng. (2011) 8:046033. 10.1088/1741-2560/8/4/046033 [PubMed] [CrossRef] [Google Scholar]

110. Aurand ER, Lampe KJ, Bjugstad KB. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci Res. (2012) 72:199–213. 10.1016/j.neures.2011.12.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Moshayedi P, Ng G, Kwok JC, Yeo GS, Bryant CE, Fawcett JW, et al.. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. (2014) 35:3919–25. 10.1016/j.biomaterials.2014.01.038 [PubMed] [CrossRef] [Google Scholar]

112. Liu S, Schackel T, Weidner N, Puttagunta R. Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives. Front Cell Neurosci. (2018) 11:430. 10.3389/fncel.2017.00430 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Higuchi A, Suresh Kumar S, Benelli G, Ling Q, Li H, Alarfaj AA, et al.. Biomaterials used in stem cell therapy for spinal cord injury. Prog Mater Sci. (2019) 103:374–424. 10.1016/j.pmatsci.2019.02.002 [CrossRef] [Google Scholar]

114. Huang L, Fu C, Xiong F, He C, Wei Q. Stem cell therapy for spinal cord injury. Cell Transplant. (2021) 30:963689721989266. 10.1177/0963689721989266 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, et al.. Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Null. (2009) 11:618–30. 10.1080/14653240903005802 [PubMed] [CrossRef] [Google Scholar]

116. Kourgiantaki A, Tzeranis DS, Karali K, Georgelou K, Bampoula E, Psilodimitrakopoulos S, et al.. Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. Npj Regenerative Medicine. (2020) 5:12. 10.1038/s41536-020-0097-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Cooke MJ, Vulic K, Shoichet MS. Design of biomaterials to enhance stem cell survival when transplanted into the damaged central nervous system. Soft Matter. (2010) 6:4988–98. 10.1039/c0sm00448k [CrossRef] [Google Scholar]

118. Xiao Z, Tang F, Tang J, Yang H, Zhao Y, Chen B, et al.. One-year clinical study of neuroregen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci. (2016) 59:647–55. 10.1007/s11427-016-5080-z [PubMed] [CrossRef] [Google Scholar]

119. Schaub NJ, Johnson CD, Cooper B, Gilbert RJ. Electrospun fibers for spinal cord injury research and regeneration. J Neurotrauma. (2016) 33:1405–15. 10.1089/neu.2015.4165 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically conductive materials: opportunities and challenges in tissue engineering. Biomolecules. (2019) 9:448. 10.3390/biom9090448 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Stewart E, Kobayashi NR, Higgins MJ, Quigley AF, Jamali S, Moulton SE, et al.. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C, Methods. (2015) 21:385–393. 10.1089/ten.tec.2014.0338 [PubMed] [CrossRef] [Google Scholar]

122. Calaresu I, Hernandez J, Rauti R, Rodilla BL, Arché-Núñez A, Perez L, et al.. Polystyrene nanopillars with inbuilt carbon nanotubes enable synaptic modulation and stimulation in interfaced neuronal networks. Adv Mater Interfaces. (2021) 8:2002121. 10.1002/admi.202002121 [CrossRef] [Google Scholar]

123. Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol. (2019) 319:112963. 10.1016/j.expneurol.2019.112963 [PubMed] [CrossRef] [Google Scholar]

124. He L, Sun Z, Li J, Zhu R, Niu B, Tam KL, et al.. Electrical stimulation at nanoscale topography boosts neural stem cell neurogenesis through the enhancement of autophagy signaling. Biomaterials. (2021) 268:120585. 10.1016/j.biomaterials.2020.120585 [PubMed] [CrossRef] [Google Scholar]

125. Cajavilca C, Varon J, Sternbach G. Luigi galvani and the foundations of electrophysiology. Resuscitation. (2009) 80:159–62. 10.1016/j.resuscitation.2008.09.020 [PubMed] [CrossRef] [Google Scholar]

126. Mccaig CD, Zhao M. Physiological electrical fields modify cell behaviour. Bioessays. (1997) 19:819–826. 10.1002/bies.950190912 [PubMed] [CrossRef] [Google Scholar]

127. Jenkins LS, Duerstock BS, Borgens RB. Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt. Dev Biol. (1996) 178:251–62. 10.1006/dbio.1996.0216 [PubMed] [CrossRef] [Google Scholar]

128. Alexander J. K., Fuss B., Colello R. J. (2006). Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biology. 2(2):93-103 10.1017/S1740925X0600010X [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: a novel tool for tissue engineering. Tissue Eng B: Rev. (2013) 19:48–57. 10.1089/ten.teb.2012.0183 [PubMed] [CrossRef] [Google Scholar]

130. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VMK. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol. (2007) 205:347–59. 10.1016/j.expneurol.2007.01.040 [PubMed] [CrossRef] [Google Scholar]

131. Wenjin W, Wenchao L, Hao Z, Feng L, Yan W, Wodong S, et al.. Electrical stimulation promotes bdnf expression in spinal cord neurons through ca2+- and erk-dependent signaling pathways. Cell Mol Neurobiol. (2011) 31:459–67. 10.1007/s10571-010-9639-0 [PubMed] [CrossRef] [Google Scholar]

132. Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of bdnf and trkb mrna in regenerating rat femoral motor neurons. Eur J Neurosci. (2000) 12:4381–90. 10.1046/j.1460-9568.2000.01341.x [PubMed] [CrossRef] [Google Scholar]

133. Vivó M, Puigdemasa A, Casals L, Asensio E, Udina E, Navarro X. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp Neurol. (2008) 211:180–93. 10.1016/j.expneurol.2008.01.020 [PubMed] [CrossRef] [Google Scholar]

134. Wenger N, Moraud EM, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, et al.. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med. (2014) 6:255ra133. 10.1126/scitranslmed.3008325 [PubMed] [CrossRef] [Google Scholar]

135. Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot JB, et al.. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. (2016) 539:284–8. 10.1038/nature20118 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Wang S, Zhang LC, Fu HT, Deng JH, Xu GX Li T, et al.. Epidural electrical stimulation effectively restores locomotion function in rats with complete spinal cord injury. Neural Regen Res. (2021) 16:573–9. 10.4103/1673-5374.290905 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Koh GP, Fouad C, Lanzinger W, Willits RK. Effect of intraoperative electrical stimulation on recovery after rat sciatic nerve isograft repair. Neurotrauma Reports. (2020) 1:181–91. 10.1089/neur.2020.0049 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Potter KA, Buck AC, Self WK, Callanan ME, Sunil S, Capadona JR. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials. (2013) 34:7001–15. 10.1016/j.biomaterials.2013.05.035 [PubMed] [CrossRef] [Google Scholar]

139. Potter KA, Simon JS, Velagapudi B, Capadona JR. Reduction of autofluorescence at the microelectrode–cortical tissue interface improves antibody detection. J Neurosci Methods. (2012) 203:96–105. 10.1016/j.jneumeth.2011.09.024 [PubMed] [CrossRef] [Google Scholar]

140. Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Science Advances. (2017) 3:E1601649. 10.1126/sciadv.1601649 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Prasad A, Sanchez JC. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng. (2012) 9. 10.1088/1741-2560/9/2/026028 [PubMed] [CrossRef] [Google Scholar]

142. Megía García A, Serrano-Muñoz D, Taylor J, Avendaño-Coy J, Gómez-Soriano J. Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury: a systematic review. Neurorehabil Neural Repair. (2020) 34:3–12. 10.1177/1545968319893298 [PubMed] [CrossRef] [Google Scholar]

143. Distler T, Boccaccini AR. 3d printing of electrically conductive hydrogels for tissue engineering and biosensors – a review. Biomater. (2020) 1:1–13. 10.1016/j.actbio.2019.08.044 [PubMed] [CrossRef] [Google Scholar]

144. Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG. Hybrid conducting polymer-hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthc Mater. (2012) 1:762–7. 10.1002/adhm.201200182 [PubMed] [CrossRef] [Google Scholar]

145. Liu L, Li P, Zhou G, Wang M, Jia X, Liu M. Increased proliferation and differentiation of pre-osteoblasts mc3t3-e1 cells on nanostructured polypyrrole membrane under combined electrical and mechanical stimulation. J Biomed Nanotechnol. (2013) 9:1532–9. 10.1166/jbn.2013.1650 [PubMed] [CrossRef] [Google Scholar]

146. Wang L, Wu Y, Hu T, Guo B, Ma PX. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3d bioactuators. Acta Biomater. (2017) 1:68–81. 10.1016/j.actbio.2017.06.036 [PubMed] [CrossRef] [Google Scholar]

147. Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, et al.. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A. (2013) 78:882–92. 10.1089/ten.TEA.2012.0111 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Distler T, Polley C, Shi F, Schneidereit D, Ashton MD, Friedrich O. Electrically Conductive And 3d-Printable Oxidized Alginate-Gelatin Polypyrrole:Pss Hydrogels For Tissue Engineering. Adv Healthc Mater. (2021) 10:E2001876. 10.1002/adhm.202001876 [PubMed] [CrossRef] [Google Scholar]

149. Shah A, Firlak M, Berrow SR, Halcovitch NR, Baldock SJ, Yousafzai BM. Electrochemically enhanced drug delivery using polypyrrole films. Materials. (2018) 11:1123. 10.3390/ma11071123 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Chen X, Wu Y, Ranjan VD, Zhang Y. Three-dimensional electrical conductive scaffold from biomaterial-based carbon micro fiber sponge with bioinspired coating for cell proliferation and differentiation. Carbon N Y. (2018) 134:174–82. 10.1016/j.carbon.2018.03.064 [CrossRef] [Google Scholar]

151. Magaz A, Li X, Gough JE, Blaker JJ. Graphene oxide and electroactive reduced graphene oxide-based composite fibrous scaffolds for engineering excitable nerve tissue. Mater Sci Eng C Mater Biol Appl. (2020) 119:111632. 10.1016/j.msec.2020.111632 [PubMed] [CrossRef] [Google Scholar]

152. Kim JH, Kataoka M, Jung YC, Ko YI, Fujisawa K, Hayashi T, et al.. Mechanically tough, electrically conductive polyethylene oxide nanofiber web incorporating dna-wrapped double-walled carbon nanotubes. Acs Appl Mater Interfaces. (2013) 5:4150–4. 10.1021/am400715u [PubMed] [CrossRef] [Google Scholar]

153. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, et al.. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep. (2013) 3:1604. 10.1038/srep01604 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, et al.. Construction of a 3d rgo-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale. (2016) 8:1897–904. 10.1039/C5NR06602F [PubMed] [CrossRef] [Google Scholar]

155. Baranes K, Shevach M, Shefi O, Dvir T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. (2016) 16:2916–20. 10.1021/acs.nanolett.5b04033 [PubMed] [CrossRef] [Google Scholar]

156. Wickham A, Vagin M, Khalaf H, Bertazzo S, Hodder P, Dånmark S. Electroactive biomimetic collagen-silver nanowire composite scaffolds. Nanoscale. (2016) 8:14146–55. 10.1039/C6NR02027E [PubMed] [CrossRef] [Google Scholar]

157. Sezer UA, Ozturk K, Aru B, Demirel GY, Sezer S, Bozkurt MR. Zero valent zinc nanoparticles promote neuroglial cell proliferation: a biodegradable and conductive filler candidate for nerve regeneration. J Mater Sci: Mater Med. (2017) 28:19. 10.1007/s10856-016-5831-1 [PubMed] [CrossRef] [Google Scholar]

158. Zhou L, Fan L, Yi X, Zhou Z, Liu C, Fu R, et al.. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano. (2018) 12:10957–67. 10.1021/acsnano.8b04609 [PubMed] [CrossRef] [Google Scholar]

159. Lorite GS, Ylä-Outinen L, Janssen L, Pitkänen O, Joki T, Koivisto JT, et al.. Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Res. (2019) 12:2894–9. 10.1007/s12274-019-2533-2 [CrossRef] [Google Scholar]

160. Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, et al.. 3D printing nano-conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng. (2018) 15:016018. 10.1088/1741-2552/aa95a5 [PubMed] [CrossRef] [Google Scholar]

161. Pan S, Qi Z, Li Q, Ma Y, Fu C, Zheng S, et al.. Graphene oxide-plga hybrid nanofibres for the local delivery of igf-1 and bdnf in spinal cord repair. Artif Cells Nanomed Biotechnol. (2019) 47:651–64. 10.1080/21691401.2019.1575843 [PubMed] [CrossRef] [Google Scholar]

162. Qi Z, Guo W, Zheng S, Fu C, Ma Y, Pan S, et al.. Enhancement of neural stem cell survival, proliferation and differentiation by igf-1 delivery. In Rsc Adv. (2019) 8:8315–8325 10.1039/C8RA10103E [CrossRef] [Google Scholar]

163. Liu H, Wang Y, Yang Y, Wang A, Huang C, Zhao Z, et al.. Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons. J Biomed Mater Res A. (2021) 109:488–99. 10.1002/jbm.a.37031 [PubMed] [CrossRef] [Google Scholar]

164. López-Dolado E, González-Mayorga A, Gutiérrez MC, Serrano MC. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats. Biomaterials. (2016) 9:72–81. 10.1016/j.biomaterials.2016.05.012 [PubMed] [CrossRef] [Google Scholar]

165. Lutolf M, Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. (2005) 23:47–55. 10.1038/nbt1055 [PubMed] [CrossRef] [Google Scholar]

166. Lee HJ, Park J, Yoon OJ, Kim HW, Lee DY, Kim DH. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol. (2011) 6:121–5. 10.1038/nnano.2010.281 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Zhou K, Motamed S, Thouas GA, Bernard CC, Li D, Parkington HC, et al.. Graphene functionalized scaffolds reduce the inflammatory response and supports endogenous neuroblast migration when implanted in the adult brain. PLoS ONE. (2016) 11:E0151589. 10.1371/journal.pone.0151589 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Agarwal G, Kumar N, Srivastava A. Highly elastic, electroconductive, immunomodulatory graphene crosslinked collagen cryogel for spinal cord regeneration. Mater Sci Eng C Mater Biol Appl. (2021) 118:111518. 10.1016/j.msec.2020.111518 [PubMed] [CrossRef] [Google Scholar]

169. Eftekhari BS, Eskandari M, Janmey PA, Samadikuchaksaraeic A, Gholipourmalekabadi M. Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Adv. (2021) 11:15795. 10.1039/D1RA00413A [CrossRef] [Google Scholar]

170. Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A. (1997) 94:8948–53. 10.1073/pnas.94.17.8948 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Moroder P, Runge MB, Wang H, Ruesink T, Lu L, Spinner RJ, et al.. Material properties and electrical stimulation regimens of polycaprolactone fumarate–polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. (2011) 7:944–53. 10.1016/j.actbio.2010.10.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Farkhondehnia H, Mohammed TA, Zamani F. Fabrication of biocompatible plga/pcl/pani nanofibrous scaffolds with electrical excitability. Fibers Polymers. (2018) 19:1813–9. 10.1007/s12221-018-8265-1 [CrossRef] [Google Scholar]

173. Qing H, Jin G, Zhao G, Huang G, Ma Y, Zhang X, et al.. Heterostructured silk-nanofiber-reduced graphene oxide composite scaffold for sh-sy5y cell alignment and differentiation. Acs Appl Mater Interfaces. (2018) 10:39228–37. 10.1021/acsami.8b12562 [PubMed] [CrossRef] [Google Scholar]

174. Zhu W, Ye T, Lee S, Cui H, Miao S, Zhou X, et al.. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine. (2018) 14:2485–94. 10.1016/j.nano.2017.03.018 [PubMed] [CrossRef] [Google Scholar]

175. Hernández-Bule ML, Paíno CL, Trillo MÁ, Úbeda A. Electric stimulation at 448 khz promotes proliferation of human mesenchymal stem cells. Cellular Physiol Biochem. (2014) 34:741–55. 10.1159/000366375 [PubMed] [CrossRef] [Google Scholar]

176. Song S, Amores D, Chen C, McConnell K, Oh B, Poon A, et al.. Controlling properties of human neural progenitor cells using 2d and 3d conductive polymer scaffolds. Sci Reports. (2019) 9:19565. 10.1038/s41598-019-56021-w [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Girão AF, Sousa J, Domínguez-Bajo A, González-Mayorga A, Bdikin I, Pujades-Otero E, et al.. 3d reduced graphene oxide scaffolds with a combinatorial fibrous-porous architecture for neural tissue engineering. Acs Appl Mater Interfaces. (2020) 12:38962–75. 10.1021/acsami.0c10599 [PubMed] [CrossRef] [Google Scholar]

178. Shin J, Choi EJ, Cho JH, Cho AN, Jin Y, Yang K, et al.. Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules. (2017) 18:3060–72. 10.1021/acs.biomac.7b00568 [PubMed] [CrossRef] [Google Scholar]

179. Fu C, Pan S, Ma Y, Kong W, Qi Z, Yang X. Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation. Artificial Cells, Nanomedicine, Biotechnol. (2019) 47:1867–76. 10.1080/21691401.2019.1613422 [PubMed] [CrossRef] [Google Scholar]

180. Pelin M, Fusco L, León V, Martín C, Criado A, Sosa S, et al.. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep. (2017) 7:40572. 10.1038/srep40572 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Theodore N, Hlubek R, Danielson J, Neff K, Vaickus L, Ulich TR, et al.. First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury: a clinical pilot study for safety and feasibility. Neurosurgery. (2016) 79:E305–12. 10.1227/NEU.0000000000001283 [PubMed] [CrossRef] [Google Scholar]

182. Prager J, Adams CF, Delaney AM, Chanoit G, Tarlton JF, Wong LF, et al.. Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a 'target' stiffness for hydrogel synthesis in spinal cord injury. J Tissue Eng. (2020) 11:2041731420934806. 10.1177/2041731420934806 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Qian Y, Yuan WE, Cheng Y, Yang Y, Qu X, Fan C. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis. Nano Lett. (2019) 19:8990–9001. 10.1021/acs.nanolett.9b03980 [PubMed] [CrossRef] [Google Scholar]

184. Qian Y, Wang X, Song J, Chen W, Chen S, Jin Y, et al.. Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. Npj Regen Med. (2021) 6:31. 10.1038/s41536-021-00142-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Xu C, Chang Y, Wu P, Liu K, Dong X, Nie A, et al.. Two-dimensional-germanium phosphide-reinforced conductive and biodegradable hydrogel scaffolds enhance spinal cord injury repair. Adv Funct Mater. (2021) 31:2104440. 10.1002/adfm.202104440 [CrossRef] [Google Scholar]